溫良碩臺灣大學:海洋研究所侯琇凡Hou, Hsiu-FanHsiu-FanHou2007-11-272018-06-282007-11-272018-06-282004http://ntur.lib.ntu.edu.tw//handle/246246/56512磷(phosphorus)是生物成長所需要的主要營養鹽之一,而磷的缺乏通常是淡水或是海洋環境裡浮游植物生長的限制因子。然而,多位學者早已證實浮游植物可以攝取有機磷替代最容易被吸收利用的磷酸鹽,營養鹽內循環也可以將有機磷顆粒帶回上層海水,而溶解性有機磷佔上層海水中的總溶解態磷很大比例的事實,更一再暗示了溶解性有機磷在上層水體中的重要性。因此,本研究選用1976年由Koroleff所提出的過硫酸鉀氧化劑水解法進行有機磷的消化,針對部分實驗條件略作修改以期達到最佳的回收率。在抗壞血酸鉬藍還原比色法定量無機磷酸鹽的配合之下,測量南海時間序列(SEATS)計畫中時序測站的溶解性無機磷酸鹽與總溶解態磷濃度,而獲得其相扣而得的溶解性有機磷濃度。 南海有光層內的溶解態磷物種確實存在季節性的變化,冬夏兩季的溶解態無機磷酸鹽與總溶解態磷的濃度較高,而春季與秋季的濃度則偏低。季節性的變化除了與水體密度層結構改變有關,亦可能與東北季風盛行期間沙塵暴夾帶大量的無機磷礦物進入南海海域有極大的關連。南海有光層內溶解性有機磷濃度在表水50公尺以淺的濃度範圍是0.11 ~ 0.20 μM,有光層內的季節性變化不大,而且濃度隨著深度增加而逐漸降低,水深200公尺以後的濃度已經幾近於零。南海有光層內溶解態有機磷與無機磷的比例,大致呈現由表水往下迅速遞減的趨勢,在水深10公尺以淺,因為無機磷酸鹽濃度非常低而導致秋季的DOP/DIP比例高達38,而冬季最低約為1~2。除了表水之外,春夏秋三個季節的DOP/DIP與螢光最大值訊號無明顯的關聯性,但在次表層皆有一個DOP/DIP的相對高值。南海營養鹽躍層深度較淺且有東北季風挾帶而來的沙塵,磷酸鹽濃度非常充足,因而有光層內的生物對於溶解態有機磷的需求不高,溶解性有機磷幾乎不會有太大的濃度變化。Phosphorus (P) is an essential macronutrient required for all living organisms. Several evidences suggest that phosphorus may limit primary production rates in the oligotrophic marine habitats, which has stimulated great interests in P dynamics. In the ocean, total dissolved phosphorus (TDP) pool, according to the operational definition, is generally partitioned into dissolved inorganic P (DIP, mostly orthophosphate) and dissolved organic P (DOP, mostly phosphorus esters and phosphonates). In this study, a modified alkaline persulfate oxidation method together with standard molybdenum blue method, was examined and employed for quantitatively converting a range of organic phosphorus compounds to orthophosphate, and provided the direct measurements of total dissolved phosphorus in seawater samples. Field observations of the concentration changes in dissolved phosphorus pool in the South China Sea were made at Station KK1 (18.25°N, 115.67°E) several times from August 2003 to May 2004. Both TDP and DIP concentrations measured in the euphotic zone showed strong seasonal variations and covariant trends with higher concentrations found in summer and winter. The DOP concentrations in the upper 200 m ranged from 0 to 0.3 μM decreasing with depth showed distinct seasonal patterns, and subsurface maximum found in corresponding to that of Chlorophyll-a. As DOP/DIP ratios in the upper 60m showed strong seasonal variations and declined with increasing depth. These results suggest that relatively consistent DOP concentrations in surface water may sustain the nutrient recycling supplying for the growth of living organisms.中文摘要 ……………………………………………………………………………Ⅰ 英文摘要 ……………………………………………………………………………Ⅱ 誌謝 …………………………………………………………………………………Ⅲ 目錄 …………………………………………………………………………………Ⅳ 表目錄 ………………………………………………………………………………Ⅶ 圖目錄 ………………………………………………………………………………Ⅷ 第一章 序論 1.1 前言 ………………………………….……………………………………….1 1.2 文獻回顧 ………………………………………….………………………….1 1.1.1海洋磷循環………………………………………………………………..1 1.1.2磷在海洋的空間分佈…………………………………………………......2 1.3 海洋中的有機物質的存在與重要性 ………………………………………..3 1.3.1 初級生產淨量 …………………………………………………………..3 1.2.2 營養鹽內循環 …………………………………………………………..4 1.2.3 氮磷比例 ………………………………………………………………..5 1.4 有機磷實驗方法沿革 ………………………………………………………..6 1.5 研究目的 ……………………………………………………………………..8 第二章 實驗方法 2.1 實驗原理 ……………………………………………………………………..9 2.1.1 有機磷化合物的消化 ……………………………………….………….9 2.1.2 磷酸鹽的定量…………………………………………………………..10 2.2 實驗器材與試劑 ……………………………………………………………11 2.2.1 實驗器材 ………………………………………….…………………...11 2.2.2 試劑配製 …………………………..…………….…………………….12 2.3 標準品配製 …………………………………………………………………14 2.3.1 磷酸鹽標準溶液 ……………………………………………...……….14 2.3.2 有機磷標準溶液 ……………………………………………………....15 2.4 實驗流程 ……………………………………………………………………16 2.4.1 前置準備工作 …………………………………………………………16 2.4.2 現場採樣與過濾 ……………………………………………………....17 2.4.3 無機磷酸鹽(DIP)定量 ……………………………………………..17 2.4.4 總磷(TP)定量 ……………………………………………………….18 2.5 實驗數據處理與可信度 ……………………………………………………19 2.5.1 標準溶液檢量線 ……………………………………………………....19 2.5.2 偵測極限(Detection limit)………………………………………….....20 第三章 實驗條件改良與討論 3.1 消化條件最佳化 ……………………………………………………………21 3.1.1 概述 …………………………………………………………………....21 3.1.2 容器的選擇 …………………………………………………………....22 3.1.3 溶劑的選擇 …………………………………………...……………….22 3.1.4 氧化劑量的調整 …………………………………………………...….23 3.2 鹼性過硫酸鹽氧化法的檢驗 ………………………………………………24 3.2.1 氧化劑殘留 ………………………………………………………...….24 3.2.2 溶液pH值 ……………………………………………………………..24 3.2.3 介質效應干擾 ………………………………………………………....25 3.3 有機磷模凝化合物 …………………………………………………………26 3.3.1 實驗目的 …………………………………………………………...….26 3.3.2 選擇有機磷模凝化合物 ……………………………….…………..….27 3.3.3 消化時間對回收率的影響 ………………………………………..…..28 3.3.4 基質效應對回收率的影響 …………………………………………....30 3.4 過濾與濃縮的必要性 ………………………………………………………31 3.4.1 過濾與否的爭議 ……………………………………………………....32 3.4.2 實驗結果 ……………………………………………………………....32 3.4.3 濃縮測量與直測 ……………………………………………………....32 第四章 南海有光層磷物種探討 4.1南海時間序列究計畫 …………………………………………………….…34 4.1.1 計畫緣起 ………………………………………………………………34 4.1.2 南海簡介 ………………………………………………………………35 4.1.3 歷史文獻 ………………………………………………………………36 4.2 有光層磷物種探測 …………………………………………………………37 4.2.1 研究範圍 ………………………………………………………………..37 4.2.2 無機態磷酸鹽(DIP)…………………………………………………..38 4.2.3 總溶解態磷(TDP)…………………………………………………….39 4.2.4 溶解態有機磷(DOP)…………………………………………………39 4.3 南海有光層溶解態磷物種的時序變化 ……………………………………..40 4.3.1濃度變化的真假判讀 ……………………………………………………40 4.3.2季節變化 …………………………………………………………………42 4.3.3日夜變化 …………………………………………………………………43 4.4定點測站時序變化的比較……………………………………………...……..44 4.4.1 溶解態磷物種分佈 ……………………………………………………..44 4.4.2溶解態磷物種比例 ………………………………………………………45 第五章 結論 ……………………………………………………………………….47 參考文獻 ………………………………………………………………………...…49 表 ………………………………………………………………………………...…55 圖 ………………………………………………………………………………...…63 表目錄 表2 – 1 有機磷模凝化合物基本化學資料表 ……………………………………55 表2 – 2 無機磷酸鹽檢量線 ………………………………………………………56 表2 – 3 消化後之總溶解態磷檢量線 ……………………………………………57 表3 – 1 消化容器的選擇對消化過程失重的影響 ………………………………58 表3 – 2 還原劑濃度對消化後回收率的影響 …………………………………....59 表3 – 3 有機磷化物水解之標準自由能 …………………………………………60 表4 – 1 化學水文探測資料 ………………………………………………………61 表4 – 2 混合層深度與時間對照表 ………………………………………………62 圖目錄 圖1 – 1 全球三大洋營養鹽(硝酸鹽,磷酸鹽,矽酸鹽)濃度空間分佈圖 ….63 圖3 – 1 氧化劑配製的溶劑選擇對試劑空白值的影響 …………………………64 圖3 – 2 標準溶液配製的溶劑選擇對試劑空白值的影響 ………………………64 圖3 – 3 改變氧化劑體積對試劑空白值與檢量線斜率的影響 …………………65 圖3 – 4 稀釋氧化劑濃度對試劑空白值與檢量線斜率的影響 …………………65 圖3 – 5 增加還原劑(Ascorbic acid)濃度驗證氧化劑是否殘留 ……………66 圖3 – 6 樣水消化前後添加呈色試劑的溶液pH值 …………………………….66 圖3 – 7 介質效應對消化前後磷酸鹽標準溶液校正曲線的影響 ………………67 圖3 – 8 有機磷模凝化合物分子結構示意圖 ……………………………………68 圖3 – 9 消化時間對鹼性過硫酸鹽法消化有機磷模凝化合物回收率的影響 …69 圖3 –10有機磷模凝化合物回收率隨消化時間變化關係圖 ……………………70 圖3 –11 消化前,基質效應對有機磷模凝化合物的影響 ………………………71 圖3 –12 消化後,基質效應對有機磷模凝化合物的影響 ………………………71 圖3 –13 OR1-710 測站示意圖(21°30’N, 119°59’E)……………………...72 圖3 –14 過濾與否對磷酸鹽(○)和總磷(□)濃度的比較 ………………...72 圖3 –15 過濾與未過濾對(a)磷酸鹽和(b)總磷濃度的比較 ……………..73 圖3 –16 OR1-690使用不同方法測量無機磷酸鹽濃度之差異 …………….…..74 圖3 –17 MAGIC與現場手測磷酸鹽濃度之比較 …………………………….….75 圖4 – 1 南海海域地形示意圖,白點為時間序列測站 KK1……………………..76 圖4 – 2 南海溶解態磷濃度對深度(0 - 3500 m)的完整垂直剖面圖(a)OR1-690(b)OR1-696(c)OR1-705(d)OR1-717 …………………….77 圖4 – 3 南海的溶解態無機磷酸鹽濃度(DIP)對深度(a)3500公尺(b)200公尺的垂直剖面圖 …………………………………………………...78 圖4 – 4 2003年8月至2004年5月之間的航次完整溫鹽圖 ………………..79 圖4 – 5 磷酸鹽濃度在現場同步測量與回到陸地後在實驗室測量的差異性以(以OR1-690航次為例)……………………………………………….…80 圖4 – 6 南海總溶解態磷(TDP)濃度對深度(a)3500公尺(b)200公尺的垂直剖面圖 ………………………………………………………...…81 圖4 - 7南海四季(a)總溶解態磷與無機態磷酸鹽的平均濃度對深度垂直剖面圖(b)溶解態有機磷濃度對深度的垂直剖面圖…………………….…82 圖4 - 8無機磷酸鹽濃度對(a)位密度 ( sigma-theta )(b)位溫 ( Pot.temperature ) 的變化關係圖 …………………………………83 圖4 – 9 2003年8月至2004年5月之間的連續性完整溫鹽圖 ………….…84 圖4 –10 (a)SEATS 歷史數據(NCOR簡報,□;Wu et al., 2002,△)與本研究(●)混合層深度季節性變化的比較;(b)表水50公尺以淺的磷酸鹽濃度對深度垂直剖面圖 …………………………………...85 圖4 –11 南海表層100公尺以淺的無機磷酸鹽濃度對位密度作圖(a)不分批次,(B)依採樣批次時間分段標示 …………………………………….86 圖4 –12 南海表層200公尺無機磷酸鹽與溶解態有機磷比例(a)濃度對深度垂直剖面圖(b)平均濃度對深度變化圖………………………………...87 圖4 –13 (a)溶解態有機磷與無機磷酸鹽的比例對深度垂直變化圖,(b)連續螢光累積加總對深度垂直剖面圖 …………………………...………882342787 bytesapplication/pdfen-US南海有機磷dissolved organic phosphorusDOP[SDGs]SDG14南海有光層海水溶解態磷物種分析與季節變化初探Seasonal Variations of Dissolved Phosphorus in the Euphonic Zone of Oligotrophic South China Seathesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/56512/1/ntu-93-R91241401-1.pdf