楊申語臺灣大學:機械工程學研究所朱明輝Chu, Ming-HuiMing-HuiChu2007-11-282018-06-282007-11-282018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/61233隨著光電產業的蓬勃發展,微小光學元件之市場需求日益遽增,其中微透鏡陣列元件在光計算與光電訊號處理方面日益重要。雖然目前已有許多製作微透鏡陣列之製程技術,但皆需昂貴設備,而且產能不高。有鑑於此,本論文致力開發軟模低壓連續性生產製程,以軟模滾輪轉印微結構UV阻劑於基板上,研究主題包括三方面: 首先是開發創新型的微透鏡陣列元件製作技術:以微機電技術製作出微孔洞陣列矽模仁,再利用氣體熱壓技術以適當溫度、壓力迫使融化的塑膠因表面張力的原因在微孔洞模穴中形成近似球狀之微透鏡;並以實驗設計方法研究影響微透鏡陣列熱壓成型的因子效應,建立起微透鏡陣列熱壓參數的線性迴歸分析。 其次是滾輪式微透鏡陣列軟模之製作:將PC微透鏡陣列薄膜包覆在刻溝矽膠滾輪上以形成一空穴,並注入PDMS溶液,待固化成型後直接製作出大面積之微透鏡陣列滾輪模具。本研究證實搭配刻溝之PDMS滾輪可有效降低滾輪施壓時與基板間的骨頭狀接觸,能與基材表面做完美接觸,有效的提升轉印面積,並達到均勻轉印的效果。 最後是滾輪式微透鏡轉印機台之建立:本研究開發一滾輪式微轉印機台,主要組成包括滾輪升降機構、底座平移輸送機構、真空底盤吸附、UV光源模組以及阻劑塗佈機構等五大部分。塗佈方式採用狹縫式塗佈,適度控制滾輪轉速、塗佈間隙與塗佈流量,並控制轉印參數,將滾輪上微結構轉印在PMMA基板上。本研究並探討成型的操作範圍。複製結果經量測證實轉印效果良好,可製作出高品質、均勻度佳的微透鏡陣列,平均表面粗糙度(R )為9.73nm,最小粗糙度(Ra)值為8.23nm。 本研究成功建立微機電製程、氣體微熱壓技術、矽膠(PDMS)鑄造、狹縫式塗佈技術與滾輪式軟模轉印複製之整合技術平台,並建立起系統化及創新性的微透鏡陣列元件的開發模組技術及最佳製造流程,具有低溫、低壓、製程簡易、快速、低成本與高產能等優勢。With the rapid stride of electro-optical industry, the needs for minimized optical elements increase. One of them is micro-lens array, which is widely used in electro-optical instruments for optical fiber communication, image sensing, displaying, and medical inspections. They are now made with expensive facility. Therefore, this thesis is devoted to developing a rolling process based on soft-mold micro-stamping mechanism to replicate micro-structure with UV curable material. There are three major steps in the development process. First, plastic micro-lens array has been fabricated using gas-assisted hot-embossing. In this method, a silica mold with micro-holes array is first fabricated by conventional photolithography and deep ion etching process. PC film is then placed on the top of the mold, and the stack is placed in a closed chamber. By heating above the characteristic temperature of the plastic film, and introducing nitrogen gas into the chamber, the polymer material is partially filled into the circular holes, and a hemispherical surface is formed due to surface tension. In addition, this study also employs factorial design to develop a precision linear regression for predicting of the height of the lens. Second, a novel technique to produce a soft roller mold has been developed. A PC micro-lens mold is bent around a carved roller to form a shell-shaped cavity, and then PDMS is poured into it. After curing, a roller with micro-lens cavity array is obtained after PC mold is torn off. Third, a roller stamping facility with UV exposure capacity has been designed, constructed, and tested. The system consists of a UV-lamp, a roller stamp, a movable platform, a slot-coating system and a pneumatic cylinder unit. During rolling operation, the soft roller mold with micro-lens cavity array uniformly coated with a layer of UV curable photopolymer is pressed against a transparent substrate with a slight pressure. At the same time, the photopolymer is cured by UV-irradiation at room temperature. As the platform moving on, micro-lens array pattern can be continuously fabricated. The lens array is of high quality and good uniformity. The root mean square roughness of the micro-lens is 9.73nm, and average surface roughness is 8.23nm. These results prove the potential of the roller stamping process for rapid fabricating micro-lens array with high productivity and low cost.第一章 導 論 1.1 微結構元件量產開發的迫切性 1 1.1.1微熱壓成型 1 1.1.2微射出成型 2 1.2 研究動機 2 1.3 具體研究方向與目標 3 1.4 論文架構 4 第二章 文獻回顧 2.1 滾輪式微結構複製成型相關技術 10 2.1.1 滾輪應用於軟微影文獻回顧 10 2.1.2 滾輪應用於熱壓微成型文獻回顧 10 2.1.3 滾輪應用於UV固化微成型文獻回顧 11 2.1.4 滾輪式微結構複製成型之比較 12 2.2. 微結構滾輪製作方法文獻回顧 12 2.3. PDMS模具和基板的接觸性與變形問題 14 2.3.1 PDMS與基板間的接觸性 14 2.3.2 PDMS模具的變形研究 15 2.4 整體回顧總結與研究創新 16 第三章 軟模滾輪式微結構複製設備與製程 3.1 PC微透鏡陣列模具之製作 27 3.2 創新型滾輪式微結構軟模製作 28 3.3 實驗材料的備製 29 3.3.1 軟模材料的準備與使用 29 3.3.2 紫外光固化高分子 30 3.4 微轉印機台設計 31 3.4.1 滾輪升降機構 31 3.4.2 基板平移傳輸機構 31 3.4.3 基板真空吸附裝置 31 3.4.4 紫外光源模組 31 3.4.5 阻劑塗佈機構 32 3.4.6 機台作動流程 33 3.5 量測儀器 34 3.5.1 紫外光源強度量測 34 3.5.2 PDMS模具表面機械性質量測 34 3.5.3 轉印基板的表面濕潤特性量測 34 3.5.4 微結構成品的輪廓量測 34 3.5.5 微結構成品的表面粗糙度量測 35 3.5.6 微透鏡陣列元件的光學性質檢測 35 第四章 塑膠微透鏡陣列氣體熱壓之因子探討 4.1 熱壓成型實驗因子選擇 52 4.1.1 潛在設計因子 52 4.1.2 擾亂因子 53 4.2 微透鏡陣列2 因子實驗 53 4.2.1 熱壓溫度 53 4.2.2 熱壓壓力 54 4.2.3 熱壓持壓時間 54 4.2.3 冷卻速度 54 4.3 執行實驗 55 4.4 透鏡高度的量測 55 4.5 實驗因子之效應 55 4.6 重複實驗 56 4.7 微透鏡陣列熱壓成型之線性迴歸 56 4.8 本章結論 57 第五章 滾輪式微轉印技術分析 5.1 狹縫式塗佈技術 65 5.1.1 滾輪式狹縫式塗佈之控制因子 65 5.1.2 執行塗佈實驗 66 5.2 PDMS滾輪與基板之壓力均勻性探討 67 5.2.1 PDMS模具與鎳模、矽模之比較 67 5.2.2 PDMS刻溝滾輪之壓力均勻性測試 67 5.3 不同膠體/硬化劑比例之PDMS與基板之接觸性探討 68 5.3.1 PDMS與玻璃基板間的黏滯能 68 5.3.2 PDMS模具表面楊氏係數之量測 69 5.3.3 PDMS模具接觸性探討 70 5.4 不同膠體/硬化劑比例之PDMS滾輪模具對轉印變形之影響 70 5.4.1 PDMS微透鏡陣列模具受壓變形現象 70 5.4.2 不同膠體/硬化劑比例之PDMS轉印結果 71 5.4.3 增加PDMS楊氏係數 71 5.4.4 接觸性與轉印殘留層之關係 71 5.5 轉印參數對成品品質之影響 72 5.5.1 轉印壓力之影響 72 5.5.2 轉印速度之影響 72 5.6 不同基板之轉印效果 73 5.7 塗佈轉速與轉印之整合 74 5.8 原始模具與轉印圖形之比較 74 5.9 本章結論 75 第六章 結論與未來研究方向 6.1 結論 92 6.2 研究貢獻 94 6.3 未來研究方向 94 參考文獻 985361855 bytesapplication/pdfen-US微結構氣體熱壓成型軟模滾輪式微轉印成型微透鏡陣列紫外光固化技術Gas-assisted hot embossingMicro-transfer molding with soft-roller moldMicro-lens arrayUV curable technique軟模低壓滾輪式轉印製程的研發與應用Development and Application of Rolling process based on soft-mold Micro-stamping Mechanismthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61233/1/ntu-95-R93522713-1.pdf