林招松臺灣大學:材料科學與工程學研究所錢志道Chien, Chih-TaoChih-TaoChien2007-11-262018-06-282007-11-262018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/55375由於微影曝光技術將到物理極限,因此要製作更小的元件必須尋求其他方法。其中以單根奈米線作為根基是一新的方式,由於它屬於一維的結構,因此在電性及光性的傳導上有很好的優勢,而且尺寸可藉由製程進行有效的控制,所以有機會取代原本的元件製作。過往的量測上所得到的性質為多數奈米線的加乘結果,並不能代表單一奈線的基本特性,因此本論文中將從單根奈米線的光學性質進行研究,以利後續的發展。 本實驗的氧化鋅奈米線是運用化學浴沉積法(chemical bath deposition,CBD)的方式成長,長度大約為10μm,再藉由敲擊的方式散佈單根奈米線於矽晶片上,以進行後續的極化光學量測,在本實驗中主要為討論綠色缺陷發光的性質。而光學量測主要分為三個部分:(1)光致激發極化光譜(PL) (2)時間解析光致激發極化光譜(TRPL) (3)拉曼極化光譜。在光致激發極化光譜中可發現發現缺陷發光會沿著奈米線長軸比較強,而光激子(exciton)則相對較弱。而在時間解析光致激發極化光譜中則發現缺陷發光沿著長軸生命週期(lifetime)較短。在第三部份拉曼光譜中,可發現拉曼光譜會隨著不同雷射極化方向的激發而產生晶格震動模式的改變。Because of the lithography technique approaches the physical limit, it must to elstablish some new process to manufacture the smaller device. There is a new method to make the devices which use the single nanowire as the building blocks. There are two apparent advantages for nanowires. First, nanowires belong to one-demensional structure, so they have better electrical transportation and optical propagation properties. Second, the material size could be adjusted by controlling the parametrs of the process. So there is a great opportunity to replace the lithography process in the future. The basic properties are not all the same between the ensembles and the single nanowire, so in this thesis we focus on the single nanowire optical properties. In our experiment the zinc oxide nanowires are synthesized by chemical bath deposition (CBD) and the diameter is about 10μm. The preparation of the single nanowire specimen is tapping the back of the ensembles substrate and then the wires would be dispersed on the silicon wafer. After that we will measure the polarization optical properties of single nanowire, in this thesis we concentrate on the green defect emission. Optical measurement would be separated into three parts (1) photoluminescence polarization spectrum (PL) (2)time-resolved photoluminescence polarization spectrum (TRPL) (3)Raman polarization spectrum. In the PL spectrum, we find out that the defect emission would be stronger along the long axis and is opposite to the exciton emission. In TRPL spectrum, the lifetime of the defect band would be shorter along the long axis. In the Raman spectrum, the main phonon modes will be changed due to different laser polarization.總目錄 論文口試委員會審定書 I 誌謝 II 中文摘要 III Abstract IV 總目錄 VI 圖目錄 Ⅸ 表目錄 XIII 第一章 緒論 1 1-1奈米結構簡介 1 1-2氧化鋅基本性質 3 1-3 研究動機 8 第二章 文獻回顧 9 2-1 單根奈米線(single nanowire)概述與起源 9 2-2 氧化鋅(zinc oxide)單一奈米結構性質 10 2-3 ZnX(X=S、Te、Se)單一奈米結構性質 15 2-4 氮化鎵(GaN)和氮化銦(InN)單一奈米結構性質 16 2-5 CdX (X=S、Se)單一結構性質 19 2-6 磷化銦(InP)單一奈米線性質 20 2-7 二氧化錫(SnO2)及矽(silicon)單一奈米線性質 21 2-8 superlattice及core-shell單一奈米線性質 22 2-9 金屬及奈米碳管單一結構性質 22 2-10 高分子(polymer)單一奈米線性質 23 2-11 單根奈米結構排列方法 24 2-12總結 25 第三章 理論基礎 26 3-1-1 不同激發發光模式 26 3-1-2 能帶結構(band structure) 26 3-1-3 被激發載子的釋放與發光機制 27 3-1-4 光激發載子的理論計算 28 3-1-5 自由激子(free exciton)與束縛激子(bound exciton) 29 3-2 時間解析光致發光光譜 30 3-3 拉曼光譜原理 32 第四章 儀器架設與簡介 34 4-1-1 micro photoluminescence系統簡介及光路架設 34 4-1-2低溫腔體系統簡介 36 4-2 共軛焦顯微鏡(confocal microscope)拉曼系統 38 第五章 製程與試片準備 39 5-1-1成長氧化鋅(zinc oxide)奈米線之實驗材料 39 5-1-2 成長氧化鋅奈米線之製程步驟 39 5-2 材料形態(SEM)分析 42 5-3 XRD結構分析 43 5-4 單根奈米線(single nanowire)試片的製備 45 第六章 氧化鋅奈米線缺陷發光性質 48 6-1 氧化鋅奈米線ensembles缺陷發光簡介 48 6-2 氧化鋅奈米線ensembles缺陷發光光激發(PL)圖譜 50 6-3光激發螢光光譜(PLE)以知不同激發波長下機制 53 6-4 變溫光致激發(PL)光譜 56 6-5 變溫時間解析光致激發(TRPL)光譜 59 6-6 氧化鋅單根奈米線(single nanowire)基本光學性質 65 6-7 單根奈米線極化(polarization)光學性質 68 6-8 光波導(waveguide)性質 81 6-9單根氧化鋅奈米線(single nanowire)極化拉曼光譜 85 第七章 結論 94 第八章 參考文獻 96 附錄 1085256601 bytesapplication/pdfen-US化學浴沉積法;單根奈米線;極化;光致激發光譜;時間解析光致激發光譜;拉曼光譜chemical bath deposition (CBD)polarizationPL spectrumTRPL spectrumRaman spectrumphonon單根氧化鋅奈米線極化光學性質Polarized Optical Properties of Single Zinc Oxide Nanowirethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/55375/1/ntu-96-R93527074-1.pdf