陳誠亮臺灣大學:化學工程學研究所侯佩伶Hou, Pei-LingPei-LingHou2007-11-262018-06-282007-11-262018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/52160由於臺灣多山川河泊,淨水場之原水以截取各溪流表面水為主,水源水質受多變的氣候形態影響甚大,每逢颱風暴雨沖刷砂土及水庫洩洪帶來高濁度原水,對淨水場的處理能力是一大考驗。 以去除水中顆粒物質的主要目的之物化處理通常包括了三個主要程序:(1)混凝(2)膠凝以及(3)固液分離。這三個程序必須在適當的操作條件下完成,其中混凝之加藥控制,是淨水處理成效之最重要影響因素。 本研究係累積90~93年臺北自來水事業處長興淨水場水處理成功的加藥數據來配湊出迴歸方程式(Regression equation),作為前饋控制自動加藥預測模式,復以操作人員因應沉澱水、過濾水之濁度趨勢及酸鹼值(pH)變化等而調整加藥之策略, 建立模糊(Fuzzy)回饋控制之規則。 其中亦對青潭堰取水口與長興場分水井加藥點進行不同比例之加藥測試,以瞭解其對長興場分水井加藥不均之改善,並可評估二階段加藥之適當比例,作為前饋預測模式之加藥比例配置。 資深的操作人員會根據水質趨勢之不同在較有利的時間點調整加藥,以確保系統的出水水質的穩定,因此在自動加藥的Fuzzy控制策略上也強化時間參數之適時因應。 經由實場之運作驗證,操作數據與相關模式均相當吻合,未來在不改變淨水場處理程序,並配合目前連續式水質監測設備,建構一組完整有效的線上可程式自動加藥控制系統,對於淨水場加藥操作效率將有所提升。In Taiwan, which is known for numerous rivers and lakes, the raw water required for water purification plants comes mainly from the surface of rivers or creeks. The raw water is, therefore, significantly subject to the impact of a capricious climate. Especially during torrential storms or typhoons, sandy soil washed out by storms and muddy raw water brought by the floodwater released by reservoirs tremendously challenges the competence of water purification plants in the capacity to treat the water. The process used to remove pellet substances out of water normally involves three major procedures: (1) Coagulation; (2) Flocculation; and (3) Segregation of solids from liquids. These three procedures must be completed under optimal operating conditions. Among these optimal conditions, the performance of the chemical control in the coagulation process represents the most influential factor regarding the performance of the water purification plants. The present study accumulates the figures regarding chemicals added in the Changhsing Water Purification Plant of the Taipei Water Department, which has been deemed a very successful example, during 2001~2004 to come into the regression equation for the feedforward control, in automatic chemical addition forecast mode. Subsequently, the operators adjusted the strategy of chemical additions in line with the turbidity trend and pH value of the sedimentary water and filtered water to set up fuzzy feedback control rules. In the study, the chemical application was tested at the inlet of the Chingtan Weir and Water Separation Well at the Changhsing Plant to monitor different ratios so as to look into the problems of the uneven application of chemicals at the wells of Changhsing Plant and to work out proposals for corrective action. The study further assessed the optimal ratio of chemical application in the two phases to work out the chemical application ratios for the mold of feedforward control. Senior operators adjusted the application of chemicals based on the different trend of water quality at more favorable timings so as to assure the stable quality of the water discharged from the systems. In the fuzzy control strategy in the automatic application of the chemicals, the study suggests that timely countermeasures should be strengthened in the parameters. Through verification of on-the-spot operation, it proves that the data of the on-the-spot operation significantly conforms to the molds concerned. In the future, with water purification plant processing procedures remaining unchanged to go in line with the existent unremitting water quality monitoring equipment, it is advisable to set up a set of comprehensive and effective online programmable automatic systems to control the application of chemicals. Such efforts should virtually upgrade the efficiency of the application of chemicals for water purification plants.第一章 研究動機 1 1.1 前言 1 1.2 動機 1 1.3 章節安排 2 第二章 臺北自來水事業處長興淨水場簡介 3 2.1 背景說明 3 2.2 淨水處理程序 5 2.3 水質監測系統 7 2.4 混凝理論 9 第三章 案例分析及模式建立 10 3.1 混凝加藥操作流程與作動時間 10 3.2 前饋控制系統之建立 12 3.2.1 建立PAC混凝劑之迴歸方程式 12 3.2.2 建立使用PAC混凝劑時之NaOH迴歸方程式 15 3.2.3 建立硫酸鋁混凝劑之迴歸方程式 17 3.2.4 建立使用硫酸鋁混凝劑時之NaOH迴歸方程式 19 3.2.5 依原水濁度變化經驗判斷控制加藥時間 20 3.3 回饋控制系統I之建立 21 3.4 回饋控制系統II之建立 23 3.4.1 沉澱水及過濾水濁度模糊控制系統 24 3.4.2 原水濁度於低濁度、水質穩定良好狀態之模糊控制系統 28 3.4.3 回饋控制 之模糊控制規則 30 3.5 加藥上下限控制系統 31 3.6 回饋控制系統III之建立-混合水pH模糊控制系統 32 3.6.1 使用PAC混凝劑建立pH目標值之模糊控制規則庫 34 3.6.2 使用硫酸鋁混凝劑建立pH目標值之模糊控制規則庫 37 3.6.3 建立NaOH加藥之Fuzzy條件規則 39 3.7 青潭堰取水口與長興場分水井加藥配置 40 第四章 實場操作驗證 43 4.1 操作實例說明 43 第五章 結論及未來展 46 5.1 結論 46 5.2 未來展望 48973028 bytesapplication/pdfen-US模糊控制混凝fuzzy controlcoagulation自來水混凝加藥系統之建模與模糊控制設計Fuzzy Model Identification and Control System Design for Coagulation Chemical Dosing of Potable Waterthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/52160/1/ntu-94-P91524001-1.pdf