沈弘俊臺灣大學:應用力學研究所何家維Ho, Chia-WeiChia-WeiHo2007-11-292018-06-292007-11-292018-06-292007http://ntur.lib.ntu.edu.tw//handle/246246/62457本研究利用微機電製程技術,成功開發出一具有自我推動能力的微混合器,即為不須外加的驅動源便可推動流體進行混合。此微混合器係利用微機電技術製作,其流體動力來源以及驅使流體混合的機制,皆為一對壓電無閥門微幫浦。利用貼附於振動腔體上的壓電片,並配合漸張╱漸縮管作為流體的驅動源,另外利用調變該對壓電片訊號的相位差,可使欲混合流體進入混合區段的時間不一致,藉以增加流體之間的接觸面積,達到更好的混合效率。   實驗中發現當驅動訊號為反相位時,有較好的混合效率,而操作頻率須在最佳工作頻率上對於流體增加接觸面積有更好的效益,且驅動電壓愈高對於流體間界面的突破效果愈好。本元件僅以一道光罩完成,且在相當短的距離內就可達到高的混合效能,對於元件整合而言,可大幅縮小元件的體積,提高了系統整合的可能性。This study proposed a new-type self-pumping micromixer which has two valve-less PZT micropumps in parallel arrangement. The rapid mixing was obtained by unsteady mixing mechanism which was due to the periodic variation of the flow at both inlets. This mixing effect is also affected by the oscillating frequency and the phase difference between the two inlet streams. High-quality mixing can be obtained in very short distance so that the device could be reduced to a very small size. In this study, experiments on the mixing effects were carried out by using two different channel geometries and three phase differences, 0°(in-phase), 90°and 180°(anti-phase). A CCD with illumination by a double-pulsing Nd-YAG laser was used to capture the flow images for the mixing process. Mixing efficiency was thus obtained by evaluating the grey scales of the images. The current results showed that higher mixing quality was obtained when in anti-phase conditions than that in in-phase condition. The results also indicated that the two inlet-streams can not be kept at the same flow rate in phase difference of 90°. For the in-phase conditions, better mixing efficiency was obtained when the larger impinging energy of fluids was generated by higher excitation voltage. For the anti-phase conditions, the existence of crescent-shape interface and the stretch-and-fold phenomenon at the confluence had pronounced effect on the mixing. Better flow mixing can be obtained by using higher driving voltage.摘要 ....i 英文摘要 .....ii 目錄 ....iii 圖目錄 ....vi 表目錄 …ix 符號說明 x 第一章 緒論..........................................................................1 1-1背景......................................................................................................1 1-2研究動機..............................................................................................2 1-3文獻回顧..............................................................................................3 1-4研究目的..............................................................................................8 第二章 原理與設計..............................................................................12 2-1微幫浦工作原理................................................................................12 2-2混合原理............................................................................................13 2-3微混合器的設計................................................................................14 2-4基本壓電原理....................................................................................16 2-5無因次參數........................................................................................19 2-6晶片製程............................................................................................20   2-6-1微流道製程.............................................................................20   2-6-2微流道封裝接合製程.............................................................22 第三章 元件製作與實驗分析方法......................................................24 3-1光罩製作............................................................................................24 3-2基材清潔............................................................................................25 3-3矽晶圓微流道製作............................................................................26   3-3-1黃光微影製程.........................................................................26   3-3-2微流道乾蝕刻製程.................................................................28   3-3-3微流道之封裝.........................................................................29   3-3-4壓電片黏貼.............................................................................30 3-4實驗儀器與設備架設........................................................................31 3-5實驗分析方法....................................................................................32 3-5實驗分析方法....................................................................................32   3-5-1微幫浦的效能.........................................................................32   3-5-2混合效率的量測法.................................................................34   3-5-3實驗參數.................................................................................37 第四章 實驗結果與討論......................................................................38 4-1元件的製作........................................................................................38 4-2脈衝式微混合器初步測試 – 非對稱型微混合器..........................39   4-2-1非對稱型微幫浦效能.............................................................39   4-2-2非對稱型匯流區現象.............................................................40   4-2-3混合效能比較….....................................................................42   4-2-4非對稱型微混合器之缺點與改進.........................................43 4-3幾何構型之修正 – 對稱型脈衝式微混合器..................................44   4-3-1對稱型微幫浦效能.................................................................44   4-3-2對稱型匯流區現象.................................................................45   4-3-3混合指標及其達穩定所需距離.............................................46   4-3-4混合效能比較.........................................................................48   4-3-5無因次參數與實驗結果之討論.............................................49 第五章 結論與未來展望......................................................................51 5-1結論....................................................................................................51 5-2未來展望............................................................................................53 參考文獻..................................................................................................55 附圖..........................................................................................................59附表..........................................................................................................91 圖目錄 圖1-1 Gerlach所提出的無閥門微幫浦 58 圖1-2平面式平行配置無閥門微幫浦....................................................58 圖1-3 由等向性濕蝕刻技術製作之雙槽式無閥門型幫浦實體圖 59 圖1-4 利用DRIE 蝕刻技術製作之雙槽式無閥門型幫浦實體圖 59 圖1-5蠕動式幫浦配合收縮閥作為脈衝式混合機制的流體驅動 60 圖1-6非對稱型脈衝式流場 60 圖1-7熱氣泡式脈衝混合器 61 圖2-1 無閥門微幫浦的工作原理 61 圖2-2 漸張管幾何尺寸 62 圖2-3 漸張管之擴張角度與壓力損失係數關係圖 62 圖2-4 漸張管穩定圖 63 圖2-5脈衝式微混合器中漸張╱漸縮管幾何尺寸設計圖 63 圖2-6 T型、Y型、及不對稱分岔型流道 64 圖2-7非對稱幾何構型設計之脈衝式微混合器 64 圖2-8對稱型幾何構型設計之脈衝式微混合器 65 圖2-9 壓電效應示意圖 65 圖2-10 蝕刻特性圖 66 圖2-11 陽極接合原理示意圖 66 圖3-1 矽晶圓微流道製作流程圖 67 圖3-2 陽極接合實驗設備 67 圖3-3 實驗量測設備架設示意圖 68 圖3-4 Micro-PIV量測設備架設示意圖 68 圖3-5 量測體積流率示意圖 69 圖3-6 Rhodamine 6G螢光強度與濃度的關係 69 圖4-1 蝕刻成功之微流道 70 圖4-2 蝕刻失敗之微流道 70 圖4-3對稱型微混合器正面圖 71 圖4-4對稱型微混合器實體圖 71 圖4-5非對稱型混合器微幫浦效能 72 圖4-6螢光強度線性校正曲線 72 圖4-7非對稱微混合器匯流區現象 73 圖4-8非對稱微混合器匯流區現象 73 圖4-9非對稱型微混合器混合效率-電壓的影響 74 圖4-10非對稱型微混合器混合效率-頻率的影響 74 圖4-11對稱型微混合器正面圖 75 圖4-12對稱型微混合器實體圖 75 圖4-13對稱型微混合器之幫浦效能 75 圖4-14對稱型微混合器同相位驅動時的匯流區-固定頻率 76 圖4-15對稱型微混合器同相位驅動時的匯流區-固定電壓 76 圖4-16對稱型為混合器反相位驅動時的匯流區-固定頻率 77 圖4-17對稱型為混合器反相位驅動時的匯流區-固定電壓 78 圖4-18 計算混合效率時的影像拍攝法 79 圖4-19沿著流道的混合指標-對稱型、同相位、1.4kHz、±20V 79 圖4-20沿著流道的混合指標-對稱型、同相位、1.4kHz、±30V 80 圖4-21沿著流道的混合指標-對稱型、同相位、1.4kHz、±40V 80 圖4-22沿著流道的混合指標-對稱型、同相位、1.2kHz、±30V 81 圖4-23沿著流道的混合指標-對稱型、同相位、1.6kHz、±30V 81 圖4-24沿著流道的混合指標-對稱型、反相位、1.6kHz、±20V 82 圖4-25沿著流道的混合指標-對稱型、反相位、1.6kHz、±30V 83 圖4-26沿著流道的混合指標-對稱型、反相位、1.6kHz、±40V 83 圖4-27沿著流道的混合指標-對稱型、反相位、1.4kHz、±30V 84 圖4-28沿著流道的混合指標-對稱型、反相位、1.8kHz、±30V 85 圖4-29對稱型微混合器混合效率-電壓的影響 86 圖4-30對稱型微混合器混合效率-頻率的影響 86 圖4-31無因次參數與實驗結果之討論-固定最佳工作頻率 87 圖4-32無因次參數與實驗結果之討論-固定電壓 87 圖5-1新式多匯流區脈衝式微混合器…………………………………88 表目錄 表1 非對稱型混合器壓電片同相位驅動時在各種條件下的體積流率 89 表2 非對稱型混合器壓電片反相位驅動時在各種條件下的體積流率 89 表3 非對稱型微混合器之混合效能-同相位 89 表4 非對稱型微混合器之混合效能-反相位 90 表5 對稱型混合器壓電片同相位驅動時在各種條件下的體積流率 90 表6 對稱型混合器壓電片反相位驅動時在各種條件下的體積流率 90 表7 同相位驅動各種條件下混合指標達到穩定所需的距離以及該距    離下的混合指標 91 表8 反相位驅動各種條件下混合指標達到穩定所需的距離以及該距 離下的混合指標 91 表9 無因次參數分析 92en-US微機電製程微混合器主動式混合脈衝流場壓電MEMSmicropumptime-pulsingpulsating flowPZT整合無閥門壓電幫浦之脈衝式微混合器設計Development of a Time-pulsing Micromixer Based on PZT Valve-less Micropumpsthesis