張正憲Chang, Jeng-Shian臺灣大學:應用力學研究所林承翰Lin, Cheng-HanCheng-HanLin2010-06-022018-06-292010-06-022018-06-292007U0001-1712200714065300http://ntur.lib.ntu.edu.tw//handle/246246/184668表面電漿共振儀(Surface Plasmon Resonance)近年來主要應用於生物分子的探測上,其無須標定、非破壞性、高靈敏度、能夠大量檢測與即時監控結合反應等多項優點使其成為最具潛力的生物感測器之一。但近年來在研究上主要以實驗為主,數值模擬部分則略微不足,因此本論文以實驗配合有限元素法數值模擬來相互映證其結果的正確性。 在界面無結合反應中分別量測不同溶液用以了解實驗儀器量測的精確度,配合MATLAB數值軟體模擬發現本實驗儀器在量測共振角變化上有良好的正確性,確認其在量測生物分子結合時的精準度。 接下來在界面結合反應實驗中,我們使用人體免疫球蛋白Human IgG1和Anti-Human IgG1來做為我們的實驗樣品,量測三種濃度來計算出結合速率常數 與解離速率常數 ,但因質量傳輸效應緣故未能滿足[A]bulk=[A]surface的假設,使得實驗所得之反應曲線在與有限元素軟體Comsol Multiphysics所建構的模擬模型所計算出之反應曲線比較時會有明顯的不同,因此我們改善模擬模型與 、 計算方法,之後即獲得改善且與實驗值有良好的相似度,證明改良後的計算方法與模擬模型的正確性。Surface plasmon resonance (SPR) biosensor has been widely used as the apparatus for the biomolecule detection in the last two decades, since it has several advantages in analyzing the interactions among biomolecules, such as label free, non-destructive, highly sensitive, high throughput, and capable of monitoring dynamic biomolecular interaction in real time. Most of the existing works focused merely on experiments. In this thesis we perform not only the experiments using a home-made angle-detection SPR system but also the numerical simulations based on the FEM software, Comsol Multiphysics v3.3 to study the behavior of the antibody-antigen interaction. In the immunoassay experiments we use human immunoglobulin Human IgG1 and Anti-Human IgG1 as the receptor-ligand pair in PBS buffer solution for the antibody-antigen interaction with the concentration of Anti-Human IgG1 being 50, 25 and 10 , respectively. The response curves of binding reaction are represented as the evolution of SPR angle versus time during the binding of Anti-IgG1 to the immobilized IgG1 on the gold film, under various concentrations of Anti-IgG1. By manipulation of measured data, the association constant and dissociation constant can be extracted in the usual fashion as done in the literature. In numerical simulation, we first perform the transporting analysis of the analyte in the solution along the tubes to obtain the concentration profile of the analyte in the solution at the inlet to the reaction chamber. Then we setup a 3-D model for the reaction chamber and perform the binding reaction simulation based on finite element calculation. The simulated results turn out to be inconsistent with the experimental curves, mainly due to incorrect affinity constants and . A more accurate way to calculate and from the measured data is thus raised. With our corrected and , the simulated curves match quite well with the experimental results.誌 謝 i 要 iibstract iii 錄 v目錄 viii目錄 xii一章 導論 1.1 前言 1.2 生物感測器 2.3 文獻回顧 6.4 研究動機 6.5 論文架構 7二章 基本理論 8.1 電磁學理論 8.2 衰逝全反射漸逝場 11.3 表面電漿波 13.4 表面電漿波之共振條件 18.5 表面電漿波之色散關係 22.6 Kretschmann組態下三層結構反射率關係 24.7 生物分子反應面親和力 26.7.1 結合解離關係式 26.7.2 質量傳輸效應 27.7.3 動力學參數分析 28.8 有限元素模擬 31.8.1 流場統御方程式 31.8.2 濃度場統御方程式 31.8.3 反應面統御方程式 32.8.4 溫度場統御方程式 32三章 實驗材料與方法 33.1 生物分子固定化程序 33.2 人體免疫球蛋白 35.2.1 免疫球蛋白結構 35.2.2 免疫球蛋白G 38.3 實驗儀器與設備 39.4 表面電漿共振儀 40.5 實驗藥品 43.6 藥品配置工作 44.7 感測晶片製作過程 45.7.1 晶片鍍膜 45.7.2 晶片改質步驟 47.8 實驗量測 48.8.1 穩定性與共振角差值量測 48.8.2 IgG1與Anti-IgG1結合實驗量測 49四章 數值模擬與實驗結果 50.1 表面電漿共振之共振角模擬 50.1.1 折射係數改變 50.1.2 金膜厚度改變 56.1.3 入射波長改變 58.1.4 金膜種類改變 59.2 表面電漿共振之介面無結合反應實驗 60.3 IgG1與Anti-IgG1結合解離反應實驗 65.3.1 實驗量測 65.3.2 動力常數計算 70五章 有限元素模擬與實驗比對 75.1 有限元素模型建立 75.1.1 流道模型 75.1.2 邊界條件與物理性質設定 76.2 模擬結果 78.2.1 流場分佈 78.2.2 溫度場分佈 81.2.3 結合反應曲線 84.3 結合反應模擬改善 86.3.1 管路濃度計算 86.3.2 動力常數反推計算 91.3.3 反算結果與實驗比對 93六章 結論與未來展望 98.1 結論 98.2 未來展望 99考文獻 100者簡歷 106表著作 107application/pdf4001541 bytesapplication/pdfen-US生醫感測器表面電漿共振儀有限元素法分析人體免疫球蛋白結合解離常數親和力biosensorsurface plasmon resonancefinite element analysishuman immunoglobulinantibody-antigen interactionaffinity constant表面電漿共振儀應用於人體免疫球蛋白檢測之實驗與數值模擬On the Immunoassay of Human Immunoglobulin using Surface Plasmon Resonance: Experiment and Numerical Simulationthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/184668/1/ntu-96-R94543042-1.pdf