黃漢邦Huang, Han-Pang臺灣大學:機械工程學研究所周立芃Chou, Li-PengLi-PengChou2010-06-302018-06-282010-06-302018-06-282009U0001-2707200917033600http://ntur.lib.ntu.edu.tw//handle/246246/187112本論文之主要目標為設計智慧型機器手。首先,本論文研發了一支輕巧的三指機器手,其類似於工業用夾爪;藉由特殊設計之繩索傳動機構,使其於抓握時手指會自動貼合被抓取物之形狀,因此非常易於控制。奠基於三指手之設計經驗,本論文更設計了一具有十個主動自由度之擬人型智慧機器手。經由解剖學方面的分析與最佳化設計之過程,使得此擬人型機器手之設計更加健全;此外,彈性串聯式制動器(series elastic actuator)與欠驅動機構(underactuated mechanism)之概念亦被應用於此機器手,使其機器手指具備順應性與高度靈巧性,但仍不失輕量與簡潔之特性。後,本論文設計了嵌入式控制系統,因此所有機構、制動器、控制器與感測器均可整合至機器手本體,使得機器手易於結合於其他系統,因此擁有廣泛的應用潛力。The main purpose of this thesis is to design the intelligent robotic hand. In this thesis, a three-fingered robotic hand, which is similar to the industrial gripper, is developed. This robotic hand is compact, lightweight, and low-cost. As the result of the special cable-driven mechanism, the robotic finger succeeds in automatically adapting to target objects so it’s easy to control this underactuated robotic hand. Next, based on the design experience of the three-fingered robotic hand, an intelligent humanoid robotic hand with 10 degrees of freedom (DOF) is designed in this thesis. Several anatomical analyses and optimization procedures are developed to improve the mechanism design. The concepts of series elastic actuator (SEA) and underactuated mechanism are also applied to give the robotic hand a compliant property and high dexterity. Hence, a succinct and functional robotic hand is devised. inally, an embedded controller system is designed. Since the robotic hands are equipped with controllers, actuators, mechanical components, and sensors, such compact design makes it easily implemented into wide range of applications.摘要 Ibstract IIist of Tables Vist of Figures VIhapter 1 Introduction 1.1 Motivation 1.2 Related Works 2.2.1 Survey of Recent Robotic Hand 3.2.2 Literature Survey of Sensing Actuator 7.3 Thesis Organization 9.4 Contributions 11hapter 2 Mechanism of Three-Fingered Robotic Hand 13.1 Design Philosophy 14.2 Kinematic Design 15.3 Cable-Driven Mechanism 17.4 Specification 19hapter 3 Mechanism Design of Humanoid Robotic Hand 20.1 Task Description 21.1.1 Hand Anatomy 21.1.2 Design Concept and Requirements 25.2 Kinematic Configuration 28.3 Optimal Design for Digit Length and Angular Rate 31.3.1 Optimality Criteria 32.3.2 Problem Formulation 35.3.3 Multi-Objective Optimization 38.4 Optimal Design for Spring Position 45.4.1 Optimality Criteria 46.4.2 Optimal Result 47.5 Detailed Mechanism Design 53.5.1 Underactuated Finger 54.5.2 SEA Mechanism 55.5.3 Modularly-Designed Finger Mechanism 57.5.4 Basilar Joint of Thumb 58.5.5 Abduction/Adduction Mechanism 59.6 Specification 60hapter 4 Kinematics of Humanoid Robotic Hand 61.1 Forward Kinematics 62.2 Inverse Kinematics 67.3 Workspace 71hapter 5 Control System of Intelligent Robotic Hand 74.1 Control Law 74.1.1 Position Control 74.1.2 Torque Control 77.2 Hybrid Control 77.3 Multiprocessor Control System 79.3.1 Central Communication Module 80.3.2 Joint Control Module 81hapter 6 Simulations and Experiments 84.1 Simulations 84.1.1 Position control system 85.1.2 Torque control system 87.2 Experiments 88hapter 7 Conclusions 91.1 Conclusions 91.2 Future Works 92eferences 936985453 bytesapplication/pdfen-US機器手擬人型欠驅動繩索驅動夾爪Robotic handHumanoidUnteractuatedCable-DrivenGripper智慧型機器手之設計Design of Intelligent Robotic Handthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/187112/1/ntu-98-R96522826-1.pdf