管傑雄臺灣大學:電子工程學研究所蘇信宏Su, Shin-HungShin-HungSu2007-11-272018-07-102007-11-272018-07-102007http://ntur.lib.ntu.edu.tw//handle/246246/57214對於奈米粒子的研究,近幾年來已經引起許多人的興趣,當物質的尺寸縮小到奈米等級的時候,許多的物理性質將因尺寸的關係而發生改變,以無人不愛的黃金為例,當它被製成金奈米粒子(nanoparticle)時,顏色不再是金黃色而呈紅色,說明了光學性質因尺度的不同而有所變化。又如石墨因質地柔軟而被用來製作鉛筆筆芯,但同樣由碳元素構成、結構相似的碳奈米管,強度竟然遠高於不銹鋼,又具有良好的彈性,因此成為顯微探針及微電極的絕佳材料。 基本上,若奈米顆粒小到三維度的尺寸都在100nm以下的時候,外觀上恰似一個點狀物,故也可稱之為量子點,量子點內部電子在各方向上的運動都受到侷限,所以量子侷限效應(quantum confinement effect)特別顯著,此效應會導致類似原子的不連續電子能階結構,因此量子點又被稱為「人造原子」(artificial atom)。 吾人對於奈米粒子的特殊光學物理現象深感興趣,故研究可朝此方向進行。利用不同的光譜儀器來分析各種奈米顆粒的光學特性,例如拉曼,FTIR(Fourier Transform Infared),UV-visible光譜儀等儀器,而分析的奈米顆粒對象主要著重在非金屬的二氧化矽奈米顆粒,將其分布在矽晶片之上或金屬光柵的凹槽之中。Materials with strong infared optical properties are of great technological importance for a wide range of applications that include optical communication,medical imaging,astronomy,and remote monitoring of industrial equipment and the environment.Typical infared materials include intrinsic and extrinsic semiconductors,quantum wells,superlattices,organic dyes,and thermal detectors such as thermopiles,bolometers,or pyroeletric devices. For infared detection applications,semiconductors such as HgCdTe, PbS, and GeInAs efficiently collect radiation across the infared spectrum. However, for many optical filtration and biomedical applications, there is a requirement that the infared material be incorporated into another media, that it be nontoxic, or that the material be small enough to pass through a specific pore size. In this study, we use silica nano crystals as the infared material. We messured the infared transmission property of them that were separate on silicon substrate to reseach what happened on the infared transmission property of the samples.As the same way, we also messured the infared transmission property of the samples that the silica nano particals were separate on gold gratings that were destruct on silicon substrate.口試委員會審定書…………………………………………………i 誌謝…………………………………………………………………iii 中文摘要……………………………………………………………………iv 英文摘要……………………………………………………………v 第一章 簡介………………………………………………………1 1.1 散射定律………………………………………………………1 1.2奈米顆粒的光學特性………………………….………………2 1.3電磁波與光柵之交互作用……………………………………2 1.4紅外光譜儀訊號增強效應……………………………………3 第二章 元件製程及量測流程……………………………………5 2.1元件製作………………………………………………………6 2.1.1空白矽晶片上沈積二氧化矽奈米粒子層…………6 2.1.2製作有金光柵的矽晶片上沈積二氧化矽奈米粒子及奈米金粒子…………………………………………………………7 2.2實驗特性驗證…………………………………………………9 2.3 FTIR量測系統與量測方法…………………………………23 2.3.1 FTIR原理介紹……………………………………23 2.3.2量測方法…………………………………………25 第三章 二氧化矽奈米粒子沉積於空的矽晶片上……………26 3.1光通過顆粒後所產生的行為………………………………26 3.2實驗結果…………………………………………………………………27 3.3實驗結果討論………………………………………………44 第四章 二氧化矽奈米粒子沉積於金光柵的凹槽…………53 4.1光柵與電磁波交互作用的基本原理………………………53 4.2實驗結果與討論……………………………………………56 第五章 結論………………………………………………………………62 參考文獻 …………………………………………………………………634435524 bytesapplication/pdfen-US奈米顆粒量子點奈米顆粒光學現象FTIR拉曼光譜二氧化矽奈米顆粒金光柵infared materialsilica nano crystalsinfared transmission propertygold grating二氧化矽奈米顆粒附著於矽晶片及金光柵上之紅外線穿透特性Infared Transsmition Property through Silica Nano Dots on Silicon Substrate and Gold Gratingthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/57214/1/ntu-96-R94943134-1.pdf