林招松臺灣大學:材料科學與工程學研究所王世宗Wang, Shih-TsungShih-TsungWang2007-11-262018-06-282007-11-262018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/55173本研究於檸檬酸浴中,藉由不同電鍍製程參數來製備鎳磷合金鍍層,並探討製程參數與電解液溫度對鎳磷合金鍍層在酸性電解液中電催化活性之影響。 研究結果顯示電鍍製程參數與鍍層電催化活性有一定關係存在,隨著電流密度、次磷酸鈉濃度與鍍層厚度增加,以及改變檸檬酸濃度能有效提高鍍層電催化活性能力。由I-t曲線發現鍍層吸附氫能力正比於電催化活性能力,但是有一飽和值存在。此外,鍍層磷含量雖不受電流密度影響,但電催化活性能力隨電流密度提高而增加,且經XRD與TEM分析後,顯示鍍層結構皆為非晶態組織,不受電鍍製程參數影響。然而隨著電解液溫度增加會降低鍍層電催化活性能力,顯示電解液溫度升高不利於鍍層電催化活性反應發生,推測為溫度增加促進鍍層表面上有氧化膜生成,導致鍍層電催化活性能力降低。鍍層經十小時陰極極化後,發現鍍層抗蝕性優良且不影響其電催化活性能力,顯示於檸檬酸浴下所製備之鎳磷合金鍍層為一良好的電極材料。Various Ni-P alloy coatings were electroplated from nickel citric baths, with emphasis on the composition of the solution and the electroplating current density. Hydrogen evolution reaction of the deposits in acid electrolytes at different temperatures was systemically studied. Experimental results show that the electrocatalytic activity of the deposit can be correlated to the composition of the solution and the electroplating current density. Ni-P deposits with improved electrocatalytic activity were made by increasing the current density, electroplating time, and solution sodium hypophosphite concentration, while immediate amounts of citric anions were added to the solution. Moreover, the deposit that absorbed more hydrogen during cathodic polarization exhibited better electrocatalytic activity, as shown in the I-t curves. Nevertheless, a saturated electrocatalytic activity was observed for the deposit with an ever-increasing hydrogen adsorption capability. The deposit phosphorus content hardly changed with the electroplating current density, whereas the electrocatalytic activity of the deposit increased with increasing electroplating current density. All deposits studied were amorphous as characterized by XRD and TEM. The electrocatalytic activity of the deposit became poor when measured in the electrolytes at higher temperatures. This is likely to be due to the formation of a surface oxide film in the high-temperature electrolyte. Finally, the electrocatalytic activity of the deposit displayed insignificant change after 10 h of cathodic polarization. This indicates that the Ni-P deposits plated from nickel citric baths had excellent corrosion resistance in acid solutions, signifying they can be the electrode for hydrogen evolution in acid electrolytes.論文摘要 I Abstract II 誌謝 IV 目次 V 圖目錄 X 表目錄 XVI 第1章 序論 1 1.1 前言 1 1.2 研究動機 2 第2章 文獻探討 3 2.1電化學沉積基本原理 3 2.2電鍍電源波形對鍍層影響 6 2.3電鍍鎳-磷合金成長行為 10 2.4鎳-磷合金共鍍機制 11 2.4.1 直接共鍍機制 12 2.4.2 間接共鍍機制 14 2.5鎳磷合金鍍層結構 15 2.6影響電鍍鎳磷合金之變因 16 2.6.1 電流密度 16 2.6.2 鍍液pH值 18 2.6.3 鍍液溫度 19 2.7鎳-磷合金電催化特性 20 2.7.1 電催化活性機制 21 2.7.2 影響電催化活性因素 23 2.7.2.1 鍍層磷含量 23 2.7.2.2 溫度 24 2.7.2.3 鍍層表面積 25 2.7.2.4 鍍層內應力 26 第3章 實驗方法與步驟 29 3.1 試片前處理 30 3.2 實驗設備 31 3.2.1 製備合金裝置 31 3.2.2 電化學量測裝置 32 3.3 鍍液配置 36 3.4 電鍍操作條件參數 38 3.5 鍍層分析 41 3.5.1 鍍層成份分析與電流效率計算 41 3.5.2 X射線繞射分析 42 3.5.3 電化學量測分析 42 3.5.4 掃描式電子顯微鏡分析 43 3.5.5 表面粗糙度分析 43 第4章 結果 44 4.1 電流密度效應 44 4.1.1 表面形貌觀察 44 4.1.2 鍍層成份分析與電流效率 47 4.1.3 陰極極化曲線 49 4.1.4 I-t曲線 51 4.1.5 表面粗糙度分析 54 4.2 次磷酸濃度效應 55 4.2.1表面形貌觀察 55 4.2.2 鍍層成份分析與電流效率 58 4.2.3 陰極極化曲線 60 4.2.4 I-t曲線 62 4.2.5 表面粗糙度分析 65 4.3 鍍層厚度效應 66 4.3.1 表面形貌觀察 66 4.3.2 鍍層成份分析與電流效率 69 4.3.3 陰極極化曲線 71 4.3.4 I-t曲線 73 4.3.5 表面粗糙度分析 76 4.4 檸檬酸效應 77 4.4.1 表面形貌觀察 77 4.4.2 鍍層成份分析與電流效率 80 4.4.3 陰極極化曲線 82 4.5 溫度效應 84 4.6 鍍層穩定性 91 4.7 X射線繞射分析 95 4.8 穿透電子顯微鏡分析 98 第5章 討論 100 5.1電流密度效應 100 5.2錯合劑效應 106 5.3磷含量效應與鍍層厚度效應 109 5.4電解液溫度效應 114 第6章 結論 119 參考文獻 120en-US檸檬酸浴鎳磷合金電催化活性吸附氫能力nickel citric bathNi-P alloy coatingelectrocatalytic activityhydrogen adsorption capability於檸檬酸浴中電鍍鎳磷合金及其電催化性質研究Electrodeposition and Electrocatalytic Properties of Nickel-Phosphorus Alloys from Citric Bathsthesis