李宣北臺灣大學:數學研究所Wang, Shyh-HaurShyh-HaurWang2007-11-282018-06-282007-11-282018-06-282004http://ntur.lib.ntu.edu.tw//handle/246246/59448The Frenkel's lemma was previously proved by sheaf method. In this paper, we will give an analytic proof of the lemma by using the Bochner-Martinelli-Koppelman integral ormula, a formal identity and the similar technique in solving the equation on a bounded strongly pseudoconvex domain. We solve the equation for a continuous (0,q)-form g on some sequences of domains which approximate the domains in Frenkel's lemma and then use the solutions to get the solution on the domains in Frenkel's lemma for some degree of q.Introduction---2 Prelimilary----4 Contents-------6 Lemma1-------6 Lemma2-------7 Lemma3-------8 Lemma4------11 Lemma5------11 Lemma6------14 Lemma7------15 Theorem1----15 Lemma8------16 Lemma9------18 Theorem2----20 References----21261436 bytesapplication/pdfen-US(無)Strongly PseudoconcaveStrongly PseudoconvexAn analytic proof of Frenkel's Lemmathesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/59448/1/ntu-93-R91221006-1.pdf