謝國煌Hsieh, Kuo-Huang臺灣大學:高分子科學與工程學研究所林坤榮Lin, Kun-RungKun-RungLin2010-05-122018-06-292010-05-122018-06-292008U0001-2607200814234700http://ntur.lib.ntu.edu.tw//handle/246246/183116在本論文中,應用不同的合成方法來製備出二系列之新型三苯胺聚合物和聚胺酯,分別利用電化學的方法和一般傳統旋轉塗佈法來製作成元件,應用於有機發光二極體。 首先,我們採用不同的結構而分成二個系統來加以探討 (1) 分別以hyperbranched poly(p-methylenetriphenylamine) (PMTPA) 及linear poly(4-vinyltriphenylamine) (PVTPA) 為電聚前驅物。(2) 以OPV(oligo (para-phenylene-(E)-vinylene)) 為主體之聚胺酯。藉由第一個系統的電化學性質對此類三苯胺聚合物應用於電洞傳導層,有了更深入的了解,其優異表現遠超過一般市售之PEDOT:PSS;另外,在第二個系統中我們發現以 IPDI (isophorone diisocyanate) 來當胺酯連接基團,反應所生成之 OPV-IPDI 亦具有良好的電洞傳導性質,並可應用於可撓式高分子發光二極體。 同時,我們也發現在第一個系統中若使用表面改質方法,則可以獲得平整、均一的電聚膜。如此,該電聚膜具有良好的電洞傳導特性並可製作出高性能的發光二極體元件。The synthesis and characterization of hyperbranched poly(p-methylenetriphenylamine) (PMTPA) are described. We discovered that N-[4-(tosyloxybutyloxymethyl)phenyl]-N,N-diphenylamine showed unexpected chemical reactivity and polymerized to form hyperbranched PMTPA under neat conditions. The hyperbranched PMTPA was electrochemically active and was deposited on electrode surface when oxidized. The SEM study revealed that electropolymerization of PMTPA would form uniform coating onto ITO surface. Polymeric light-emitting diodes (PLEDs) employing electroactive polymers of either hyperbranched PMTPA or linear Poly(4-vinyltriphenylamine) (PVTPA) as hole-transport layer in the EL device of ITO/electrochemically polymerized HTL/EML(PVK-PBD-Ir(ppy)3)/Mg/Ag demonstrated the brightness over 20,000 cd/m2 and low turn-on voltage. In particular, the device performance was very steady regardless of the thickness of the PMTPA layer, ranging from 4 to 10 nm. n addition, PLEDs using a series of linear poly(4-vinyltriphenylamines) (PVTPAs) as hole-transport layer were fabricated. The relationships between their molecular weight, thermal stabilities, surface morphology and electronic properties were investigated. The SEM study revealed that electropolymerization of lowest molecular weight (~2700 g/mol) of PVTPA with 3 CV cycles would form uniform coating on ITO surface and show the highest brightness (~34,400 cd/m2) among others. However, surface modification tactic has to be adopted for the other higher molecular weight of PVTPAs because numerous cracks were observed on the electrode surface. We discovered applying some homogeneous thin film primed the ITO anode prior to the electrodeposition of PVTPA would reduce dramatically the uneven distribution of the electroactive layer and eventually have a smooth, crack-free film surface.y the way, our experiments also showed that the PU polymer could also be applied for flexible PLED with similar performance enhancement. Based on the promising results, we concluded that OPV-IPDI was a good hole-transport material for light-emitting diode application.中文摘要…………………………………………………………… i文摘要…………………………………………………………… iihapter 1 Introduction.................................................................... 1.1. An overview of PLED History……………………………………................. 1 .2. Structure of OLEDs………………………………………………………….. 4.2.1. Single-layer structure……………………………………………………4.2.2. Double-layer structure………………………………………………….. 5.2.3. Three-layer structure……………………………………………………..6.2.4. Multilayer structure…………………………………………………….. 6.3. Materials for OLEDs and PLEDs …………………………………………..... 8.3.1. Hole-transport materials…………………………………………………8.3.2. Hole-injection materials………………………………………………… 9.3.3. Emissive materials………………………………………………………10.3.4. Electron-transport materials……………………………………………. 12.3.5. Cathode materials………………………………………………………. 12.4. Basic Operation of OLEDs…………………………………………………… 14.5. Motivation and Organization…………………………………………………16.5.1. Research incentive…………………………………………………16.5.2. Thesis Motivation and Organization………………………………18eferences………………………………………………………………………22hapter 2 Experimental……………………………………………….28.1. Instrumentation………………………………………………………28.2. Strategy for polymer design…………………………………………………32 eference………………………………………………………………………33hapter 3 he Synthesis, Electrochemical Behavior, and Electronic Properties of Hyperbranched Poly(p-methylenetriphenylamine): An Unexpected Condensation Polymerization from N-[4-(Tosyloxybutyloxymethyl)phenyl]-N,N-diphenylamine………… 34.1. Introduction …………………………………………………………………..35.2. Experimental Section………………………………………………….………37.3. Results and discussion…………………………………………….………….. 41.3.1. Preparation of PMTPA………………………..……………………… 41.3.2. Thermal Properties of PMTPA and PVTPA……..……………………48.3.3. Electrochemical Characteristics.…..…………………………………. 49.3.4. Surface Work-Function Measurement.………………………………. 50.3.5. Device Performance………………..………………………………… 51.3.6. Surface morphology investigation into electrodeposited HTL films.………………………………………………………………………… 54.4. Conclusion…………………………………………………………………...... 56 eference………………………………………………………………………....... 57haper 4 he Morphology, Electrochemical Behavior, and Electronic Properties of the Electrochemically Deposited Poly(4-vinyltriphenylamines) (PVTPA): An approach to afford a smooth, crack-free electrodeposited PVTPA films………………………………………………………………………….….. 60.1. Introduction …………………………………………………………………...61.2. Experimental Section………………………………………………….……….63.3. Results and discussion…………………………………………………………66.3.1. Thermal Properties of PMTPA and PVTPA…………………………...66.3.2. Electrochemical Characteristics.…..…………………………………. 67.3.3. Surface Work-Function Measurement.……………………………….. 70.3.4. Device Performance………………..…………………………………. 71.3.5. Investigations into morphological differences to the electrodeposited PVTPA films.…………….………………………………………………... 72.3.6. An approach to afford a smooth, crack-free electrodeposited PVTPA films.…………….…………………………………………………………. 77.3.7. Device performance comparison between PMTPA and Fc-11 primed composite HTL films.……………………………………………………… 90.4. Conclusion………………………………………….……………………….. 92 eference………………………………………………………………………… 93hapter 5 ew Hole-Transport Polyurethanes Applied to Multilayer and Flexible Polymeric Light-Emitting Diodes…………………………………..……… 95.1. Introduction ……………………………………………………….………….96.2. Experimental Section…………………………………………………..……. 97.3. Results and discussion……………………………………………………….102.3.1. Monomer Synthesis…………………………….……………………102.3.2. Polymer Characterization…………………………………………….102.3.3. Optical properties.…..………………………………………..……. ..104.3.4. Thermal properties.…………..……………………………..………. 106.3.5. Electroluminescence properties…....…………….…………………. 108.4. Conclusion…………………………………………………………………. ..116 eference………………………………………………………………………… 116able and Figure Contentshapter 1igure 1. Schematic structure diagram of Tang’s first double-layer OLED……….2igure 2. Schematic structure diagram of Friend’s first single-layer PLED……….3igure 3. Some familiar light-emitting conjugated polymeric materials……….….3igure 4. Schematic structure diagram of a single-layer OLED……….…………..4igure 5. Schematic structure diagram of double-layer OLEDs……….…………..5igure 6. Schematic structure diagram of a three-layer OLED……….…………....6igure 7. Schematic structure diagram of a multilayer OLED……….……….…....7igure 8. Molecular structures of some commonly used hole-transport materials…8igure 9. Molecular structures of some commonly used hole-injection materials…9igure 10. Chemical structures of the IrBtp2acac and Ir(ppy)3……….……….…....10igure 11. Chemical structures of the oxadiazole derivatives……….……………...13igure 12. Chemical structures of Alq3 and BeBq2……….………………………...13igure 13. Schematic energy-level diagram of an OLED…………………………...14cheme 1. The overall reaction scheme of TPB formation……..…………………...19cheme 2. Electropolymerization of Bis-diphenylamino Substituted Ferrocenes..…20hapter 2igure 1. Dual-beam UV-Vis spectrophotometer…………………………..……….29igure 2. PL measurement system…………………………………………….…….30igure 3. Schematic diagram of B-I-V measurement system……………………….30igure 4. Schematic diagram of Surface Analyzer (Model AC-2) ………………….31igure 5. AC-2 data format…………………………………………………….…….31hapter 3cheme 1. Synthesis of PMTPA…………………………………..………………….41cheme 2. Proposed Friedel-Crafts polymerization for PMTPA..…………..……….42igure 1. 1H NMR trace for the growth of polymer 2 from 1…………........….…….43igure 2. MALDI mass-analysis of 2………………………..……………………….44able 1. 13C NMR chemical shifts of the Ph3N derivatives as reference…………….45igure 3. 13C NMR spectra of the PMTPA (2)……………………………………….47able 2. 13C NMR chemical shifts of the PMTPA (2) ……………………………….47able 3. Characterization and thermal properties of PMTPA and PVTPA…………...48igure 4. Cyclic voltammograms of PMTPA with 30 repeated redox scan cycles ….49igure 5. Cyclic voltammograms of PVTPA with 30 repeated redox scan cycles ….50able 4. HOMO levels of electrochemically polymerized films for different repeated redox scan cycles…………………………………………………………………….51able 5. Dependence of the PLED device characteristics on the thickness of electrochemical polymerized PMTPA HTL………………………………………….53able 6. Dependence of the PLED device characteristics on the thickness of electrochemical polymerized PVTPA HTL…………………………………………..53igure 6. SEM picture of PMTPA film obtained by 40 CV cycles……………….….55igure 7. SEM picture of PVTPA film obtained by 3 CV cycles……………...….….55hapter 4cheme 1. Electropolymerization of Bis-diphenylamino Substituted Ferrocenes…...61cheme 2. Electropolymerization of PVTPA..……………………….……..……….62able 1. Characteristics of the PVTPAs..……………………….…………...……….66igure 1. Cyclic voltammograms of PVTPA 1 (Mw= 2701 g/mol) with 30 repeated redox scan cycles…………………………………….………….…………...……….67igure 2. Cyclic voltammograms of PVTPA 2 (Mw= 4434 g/mol) with 30 repeated redox scan cycles…………………………………….………….…………...……….68igure 3. Cyclic voltammograms of PVTPA 3 (Mw= 9097 g/mol) with 30 repeated redox scan cycles…………………………………….………….…………...……….68igure 4. Cyclic voltammograms of PVTPA 4 (Mw= 13034 g/mol) with 30 repeated redox scan cycles…………………………………….………….…………...……….69able 2. ∆E(pa-pc) of PVTPAs..……………………….…………...……………….….69able 3. HOMO levels of electropolymerized PVTPA films for three repeated redox scan cycles..……………………….…………...………………………………….….70able 4. Dependence of the PLED device characteristics on the different molecular weight of electropolymerized PVTPAs with three CV cycles………….......…….….72igure 5. SEM micrographs of electropolymerized PVTPA 1 film obtained by 3 CV cycles……………………….…………............………………………………….….73igure 6. SEM micrographs of electropolymerized PVTPA 2 film obtained by 3 CV cycles……………………….…………............………………………………….….74igure 7. SEM micrographs of electropolymerized PVTPA 3 film obtained by 3 CV cycles……………………….…………............………………………………….….75igure 8. SEM micrographs of electropolymerized PVTPA 4 film obtained by 3 CV cycles……………………….…………............………………………………….….76able 5. Contact angle comparison between bare ITO, Fc-11 3 cycles only and PMTPA-coated ITO glass….…………............………………………………….….79able 6. Summary of SEM observation for composite films…………………….….79igure 9. SEM micrographs of single-layer electropolymerized Fc-11 film obtained by 3 CV cycles….…………............……………………………………………..….….80igure 10. SEM micrographs of composite electrodeposited film (Fc-11 3 CV cycles + PVTPA 4 3 CV cycles) ….…………......…………………………………..….….81igure 11. SEM micrographs of composite electrodeposited film (Fc-11 3 CV cycles + PVTPA 4 5 CV cycles) ….…………......…………………………………….….….82igure 12. SEM micrographs of composite electrodeposited film (Fc-11 3 CV cycles + PVTPA 4 7 CV cycles) ….………......…………………………………….….…..83igure 13. SEM micrographs of composite electrodeposited film (Fc-11 3 CV cycles + PVTPA 4 10 CV cycles) ….………......…………………………………….…….84igure 14. SEM micrographs of single-layer electropolymerized PMTPA film obtained by 3 CV cycles ….………......………………………………..….….…….85igure 15. SEM micrographs of composite electrodeposited film (PMTPA 3 CV cycles + PVTPA 4 3 CV cycles) ….......………………………………..….….…….86igure 16. SEM micrographs of composite electrodeposited film (PMTPA 3 CV cycles + PVTPA 4 5 CV cycles) ….......………………………………..….….…….87igure 17. SEM micrographs of composite electrodeposited film (PMTPA 3 CV cycles + PVTPA 4 7 CV cycles) ….......………………………………..….….…….88igure 18. SEM micrographs of composite electrodeposited film (PMTPA 3 CV cycles + PVTPA 4 10 CV cycles) ….......……………………………..….…..…….89able 7. Dependence of the PLED device characteristics with vs. w/o surface modification primed layer….......……………………………..….….………..…….90igure 19. J-V comparison curves of composite film (PMTPA 3 CV cycles + PVTPA 4 3 CV cycles), (Fc-11 3 CV cycles + PVTPA 4 3 CV cycles) and PVTPA 4 3 CV cycles alone….......……………………………..….….………………..…..……….91hapter 5cheme 1. Synthesis of the OPV monomer………………………………..…….....102cheme 2. Condensation polymerization of the OPV monomer with diisocyanates.103ig. 1 Infrared (IR) spectra of TDI, OPV, OPV-TDI, OPV-IPDI and OPV-H12MDI.104able 1. Characterization and optical properties of PUs…...……………………….104ig. 2 Normalized UV-Vis absorption and PL spectra of OPV-TDI, OPV-IPDI and OPV-H12MDI polymeric films on glass……………………………..……..…….....105ig. 3 UV-Vis absorption spectra of OPV-TDI, OPV-IPDI and OPV-H12MDI in solid-state films……………………………………………………...……..…….....106ig. 4 DSC curves of OPV-TDI, OPV-IPDI and OPV-H12MDI….....……..…….....107ig. 5 TGA curves of OPV-TDI, OPV-IPDI and OPV-H12MDI….....……..…….....107able 2. PLED structure of devices 1 to 5 on ITO glass….....……..…………….....109ig. 6 Characteristic brightness-voltage curves of devices 1 to 5….....………….....110ig. 7 Current efficiency-voltage characteristic of devices 1 to 5….....………….....110able 3. Electroluminescence performance of devices 1 to 5 on ITO glass…….......111able 4. PLED structure of the flexible PLED devices 6 and 7…………..…….......112able 5. Electroluminescene performance of the flexible PLED devices 6 and 7.....112ig. 8 Characteristic brightness-voltage curves of the flexible devices 6 and 7…....112ig. 9 Current efficiency-voltage characteristic of the flexible devices 6 and 7…....113ig. 10 The electroluminescence (EL) spectra of Device 4 at various driving oltage……………………………………………...……..………………………...113ig. 11 The electroluminescence (EL) spectra of the flexible devices 6 and 7 t 9 V…………………………………………………114ig. 12 The flexible PLED with PU hole-transport modification layer at 9 V……..115ppendixigure S1. 13C NMR Spectrum of N(p-tolyl)3…………………………………121igure S2. 13C NMR Spectrum Ph2N(p-tolyl) ………………122igure S3. 13C NMR Spectrum of PhN(p-tolyl)2………………………………123igure S4.13C NMR Spectrum of Ph3N………………………124igure S5. Original 13C NMR Spectrum of polymer 2………………………125igure S6. GPC data of polymer 2 (PMTPA) ……………………126igure S7. GPC data of PVTPA ……………………………………………126igure S8. TGA curves of polymer 2 (PMTPA) …………………………...…….....127igure S9. TGA curves of PVTPA…………………………127igure S10. DSC curves of polymer 2: (Top) run 1; (Bottom) run 2……...…….....128igure S11. DSC curves of PVTPA: (Top) run 1; (Bottom) run 2………....…….....129igure S12. Cyclic voltammograms of PMTPA: (Top) run 1; (Bottom) run 2…......130igure S13. Cyclic voltammograms of PVTPA: (Top) run 1; (Bottom) run 2…………………131igure S14. B-V curves of PMTPA with 3 CV cycles…………………132igure S15. B-V curves of PMTPA with 5 CV cycles…………………132igure S16. B-V curves of PMTPA with 10 CV cycles.………………133igure S17. B-V curves of PMTPA with 15 CV cycles…………………133igure S18. B-V curves of PMTPA with 20 CV cycles…………………134igure S19. B-V curves of PMTPA with 40 CV cycles………………134igure S20. B-V curves of PVTPA with 3 CV cycles………………135igure S21. EL spectra of PVK-PBD-Ir(ppy)3-based LEDs incorporating electrodeposited PMTPA as HTL at different driving voltage………………136igure S22. EL spectra of PVK-PBD-Ir(ppy)3-based LEDs incorporating electrodeposited PVTPA as HTL at different driving voltage……………………137igure S23. Normalized EL spectra of PVK-PBD-Ir(ppy)3-based LEDs incorporating different thickness of electrodeposited PMTPA as HTL……………………137igure S24. SEM micrographs of electropolymerized PVTPA 4 film obtained by 1 CV cycle..…………………138igure S25. SEM micrographs of electropolymerized PVTPA 4 film obtained by 2 CV cycles………………140igure S26. SEM micrographs of electropolymerized PVTPA 4 film obtained by 3 CV cycles………………141igure S27. SEM micrographs of electropolymerized PVTPA 4 film obtained by 5 CV cycles………………142igure S28. SEM micrographs of electropolymerized PVTPA 4 film obtained by 10 CV cycles………………143igure S29. GPC data of PVTPA 1………………144igure S30. GPC data of PVTPA 2………………144igure S31. GPC data of PVTPA 3………………145igure S32. GPC data of PVTPA 4………………146igure S33. TGA curves of PVTPA 1………………146igure S34. TGA curves of PVTPA 2………………147igure S35. TGA curves of PVTPA 3………………147igure S36. TGA curves of PVTPA 4………………148igure S37. DSC curves of PVTPA 1: (Top) run 1; (Bottom) run 2………………149igure S38. DSC curves of PVTPA 2: (Top) run 1; (Bottom) run 2………………150igure S39. DSC curves of PVTPA 3: (Top) run 1; (Bottom) run 2………………………………………………151igure S40. B-V curves of PVTPA 1 with 3 CV cycles………………………………152igure S41. B-V curves of PVTPA 2 with 3 CV cycles………………………………………………152igure S42. B-V curves of PVTPA 3 with 3 CV cycles………………………………153igure S43. B-V curves of PVTPA 4 with 3 CV cycles………………………………153igure S44-1. Device structure with hole blocking layer (BCP=100 Å) and molecular structure of BCP………………………………………………154igure S44-2. B-V and E-V curves of devices with vs.without HBL (BCP=100 Å)………………155igure S45. Field-emission SEM images (15 KV) of the (a) bare ITO and the electrochemically deposited polymeric films of (b) Fc-8, (c) Fc-10, and (d) Fc-11 on ITO glass………………………………………157igure S46. Contact angle images: (Top) water droplet image on electrodeposited PMTPA-coated ITO glass (3 CV cycles); C/A= 70°. (Middle) water droplet image on electrodeposited Fc-11-coated ITO glass (3 CV cycles); C/A= 63°. (Bottom) water droplet image on bare ITO glass; C/A= 23°…………………………………158igure S47. Composite film thickness vs. CV cycle numbers with Fc-11 and PMTPA priming layers, respectively………………………………159igure S48-1. B-V and J-V curves of composite film (Fc-11 3 CV cycles + PVTPA 4 3 CV cycles) ………………………………………………160igure S48-2. B-V and J-V curves of composite film (PMTPA 3 CV cycles + PVTPA 4 3 CV cycles) ………………………………………………161application/pdf7334012 bytesapplication/pdfen-US有機發光二極體三苯胺聚合物聚胺酯電洞傳導層電聚合Triphenylamine (TPA)Poly(p-methylenetriphenylamine) (PMTPA)Poly(4-vinyltriphenylamine) (PVTPA)Polymeric light-emitting diodes (PLEDs)ElectropolymerizationElectroluminescence (EL)Hole-transport layer (HTL)Polyurethanes (PUs)高性能電洞注入/傳遞之新型三苯胺聚合物和聚胺酯的合成與性質研究及其在有機電致發光元件的應用High-Performance Hole-Injection/Transport Poly(p-methylenetriphenylamine), Poly(4-vinyltriphenylamine) and Polyurethane for Light-Emitting Diodes (LEDs) Applicationsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/183116/1/ntu-97-D93549011-1.pdf