吳先琪臺灣大學:環境工程學研究所王美雪Wang, Mei-sheueMei-sheueWang2007-11-292018-06-282007-11-292018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/62792摘 要 土壤不均質特性讓流體在不飽和土壤中的不同區域有不同的速度,由流體的速度差異區分為流動區域與靜止區域。微量有機物質在土壤中隨空氣或水移動時,於流動區域內之主要傳輸機制為平流與延散,而在靜止區域內之主要傳輸機制則為分子擴散。 本研究將土壤的不均勻地質特性之溶質一階交換速率係數,以一種分佈函數來參數化,進而建立微量有機物質在不均質土壤中之傳輸模式。傳輸模式中除了以分佈的一階交換速率係數描述靜止區域內的物質傳輸擴散機制之外,也包括了流動區域之平流與延散傳輸機制。研究繼而利用實驗室之土壤管柱試驗與現地土壤抽氣試驗,以不同示蹤劑在不同試驗條件下所得到之結果,進行傳輸模式之模擬與驗證。 模式分析結果與試驗結果比較,顯示本研究建立之傳輸模式能模擬有機物質在不均質土壤中的傳輸情況,及其物質傳輸受交換動力限制之狀況。實驗和模擬結果指出當有機物質移動到不流動區域內部的靜止區時,會有類似慢吸脫附之情形,是造成不平衡傳輸或濃度變化曲線有拖尾巴現象的主要因素,同時也是造成土壤抽氣試驗於抽氣停止後土壤中有機物質濃度反彈回升的主要原因。 本研究建立之包含的一階交換速率係數的傳輸模式中,以一套對數常態分佈函數或伽傌分佈函數描述一階交換速率係數的機率密度分佈,便能解決一般模擬有機物質在土壤中傳輸時,缺乏現地地質資料之問題。同時發現傳輸模式中的一階交換速率係數機率密度分佈函數,與土壤系統之系統寬度尺度、土壤含水率、有機物質於土壤固相與流體間之分配係數等場址特性有關。亦發現其中之系統寬度尺度是除了污染物本身之外,最重要的影響因子。此發現將有助於有效地預測有機物質在受污染之土壤及地下水中的分佈和移動,亦可應用於土壤蒸氣抽除(SVE)系統中預估受有機物質污染之土壤區域的整治效率、整治成本及所需的移除時間。ABSTRACT Heterogeneous unsaturated soil layers comprise both mobile and immobile regions as characterized by different flow velocities of fluid. The movement of pollutants is governed by advection and dispersion in mobile regions, and by diffusive mass transfer between mobile and immobile regions. In this study, the aim is to estimate the distribution of the first-order exchange rate coefficients that reveals the presence of soil-matrix heterogeneity, and to develop an advection-diffusion mass transport model that includes the distributed first-order exchange coefficients in unsaturated soils. The study also simulate the experimental results from laboratory soil columns and a soil-vapor-extraction (SVE) field site by using different organic compounds as tracers and under different test conditions. Modeling analyses and experimental results indicate that the including a log-normal distributed or a gamma distributed first-order exchange rate coefficient could explain the organic compounds transport in the vadose zone. Experimental results and model simulation could explain that the tailing phenomenon in chemical breakthrough curves, which signifies a non-equilibrium transport, resulting mainly from a rate-limiting exchange into and out of immobile (stagnant) regions. Model simulation could also explain the rebounding phenomenon and fit the data well by only adjusting the volume fraction of the immobile regions, the averaged radius of the aggregates and the standard deviation of the logarithmic first-order exchange rate coefficient. The problem of the lack of local geological information while modeling chemical transfer in immobile regions can be solved by using a set of first-order exchange rate coefficients in log-normal or gamma distribution, in which the related parameters are functions of the system length scale, the soil moisture content, and the chemical partition coefficient. Among these properties the system length scale is found the most important site-specific property. The findings from this study enable one to better predict the transport of trace pollutants in a heterogeneous vadose zone based on the properties of chemicals and the soil system. The model will be able to predict the organic compounds moving and distribution situation in soil and groundwater. Also the model will be able to assist the designing of the SVE system and operational strategy, and the prediction of the performance of the clean-up actions.目 錄 誌謝 中文摘要 ……………………………………………………………… I 英文摘要 ……………………………………………………………… III 目錄 ………………………………………………………………….. V 圖目錄 ………………………………………………………………… VIII 表目錄 ………………………………………………………………… X 符號說明 ……………………………………………………………… XI 第一章 前言 ………………………………………………………….. 1 第二章 背景與原理 ………………………………………………….. 5 2.1 土壤的異質性對有機污染物質於土層中傳輸之影響 ………. 5 2.1.1 土壤異質性 ……………………………………………….. 5 2.1.2 土壤不均質性造成之延散 ……………………………….. 6 2.1.3 有機污染物進出土層中的靜止區域之概念 …………….... 7 2.1.4 有機污染物質於土層中傳輸時有物質傳輸限制現象 …… 8 2.1.5 一階交換速率係數與環境因子之關係 …………………… 11 2.2 包含有機污染物在團粒內之質傳、吸附與土壤異質性之 傳輸模式 ………………………………………………………… 13 2.2.1 土壤團粒與孔隙間及靜止相與流動相間之物質傳輸模式 .. 13 2.2.2 含有靜止區域及速率係數分佈之傳輸模式 ..…………… 16 2.3 研究需求 ……………………………………………………… 17 第三章 研究方法 .…………………………………………………… 19 3.1 有機污染物質於土層中傳輸之相關試驗結果之初步分析 .… 19 3.2 以一階交換速率係數建立有機污染物質在土壤團粒中的 傳輸模式 ………………………………………………………. 23 3.2.1 一階交換速率係數為對數常態分佈函數 ………………… 24 3.2.2 一階交換速率係數為gamma分佈函數 ………………… 25 3.2.3 以不連續分佈之一階交換速率係數描述靜止區域之 濃度變化 …………………………………………………... 25 3.3 建立包含不連續分佈的一階交換速率係數之有機污染物質 在土壤中的傳輸模式 ………………………………………… 26 3.4 應用包含不連續分佈的一階交換速率係數之傳輸模式於 不飽和土壤系統 ……………………………………………… 32 3.4.1 建立傳輸模式於不飽和土壤系統 …..…………………… 32 3.4.2 傳輸模式應用於實驗室土柱實驗之模擬 ………………….. 35 3.4.2.1 土壤管柱實驗 ………………………………………… 36 3.4.2.2以包含不連續分佈一階交換速率係數之傳輸模式 模擬土壤管柱試驗 ………………………………… 37 3.4.3 傳輸模式應用於現地土壤氣體抽除法復育系統之模擬 …… 40 3.4.3.1 現地土壤氣體抽除法系統 …………………………… 40 3.4.3.2 以包含不連續一階交換速率係數之傳輸模式 模擬現地SVE系統試驗 …………………………… 45 第四章 結果與討論 ……….………………………………………… 49 4.1 實驗室土壤管柱試驗之實驗結果與模擬 ………….………… 49 4.2 現地土壤抽氣試驗之試驗結果與模擬 …………….………… 54 4.2.1 以甲苯為示蹤劑之現地土壤抽氣試驗之試驗結果與模擬 54 4.2.2 以SF6為示蹤劑之現地土壤抽氣試驗之試驗結果與模擬 57 4.2.3 以多種揮發性有機污染物質為示蹤劑之SVE試驗 結果與模擬 ………………………………………………… 60 4.3 包含不連續分佈的一階交換速率係數之有機污染物質 在土壤中的傳輸模式之敏感度分析 …………………………… 66 4.4 以Gamma分佈函數量化一階交換速率係數分佈之模擬結果 68 4.5 一階交換速率係數與試驗系統特性之關係 …………………… 75 4.5.1 試驗系統的尺度對一階交換速率係數之影響 ……………… 75 4.5.2 分配係數對一階交換速率係數之影響 ……………………… 77 4.5.3 靜止區域之半徑對一階交換速率係數之影響 ……………… 78 4.5.4 孔隙中流體的速率對一階交換速率係數之影響 …………….. 80 第五章 結論與建議 …….…………………………………………… 83 5.1 結論 …….……………………………………………………… 83 5.2 建議 …….……………………………………………………… 86 參考資料 ……….……………………………………………………… 87 附錄A. 包含不連續分佈一階交換速率係數之傳輸模式 模擬土壤管柱試驗之程式 ………………………………… 95 附錄B. 包含不連續分佈一階交換速率係數之傳輸模式 模擬SVE現地試驗之程式 ………………………………… 101 附錄C.文獻資料及實驗室管柱試驗與SVE現地試驗之系統參數… 113 圖 目 錄 圖2-1 土壤團粒在土層中的不均勻分佈情況 ……………………… 8 圖3-1 甲苯在風乾土管柱A中之傳輸試驗結果 …………………… 20 圖3-2 甲苯在微潮濕土管柱B中之傳輸試驗結果 ………………… 20 圖3-3 以甲苯為示蹤劑之現地SVE試驗之試驗結果 ……………… 21 圖3-4 以SF6為示蹤劑之SVE試驗結果 …………………………… 21 圖3-5 以多種揮發性有機污染物質為示蹤劑之SVE試驗結果 …… 22 圖3-6 土壤內之流動區域和靜止區域及各區域內 包含之氣相、液相及固相 …………………………………… 27 圖3-7 管柱試驗裝置圖 …………………………………………….. 37 圖3-8 現地SVE試驗場址之配置圖 ……………………………… 42 圖4-1 甲苯在風乾土管柱A中之傳輸試驗結果與模擬結果 ……… 49 圖4-2 甲苯在微潮濕土管柱B中之傳輸試驗結果與模擬結果 ……. 49 圖4-3 以對數常態分佈模擬土壤管柱試驗結果之 一階交換速率係數分佈圖 …………………………………… 52 圖4-4 以甲苯為示蹤劑之現地SVE試驗之試驗結果與模擬結果 …. 55 圖4-5 以SF6為示蹤劑之SVE試驗結果與模擬結果 ……………… 57 圖4-6 以對數常態分佈模擬土壤管柱及SVE試驗結果之 一階交換速率係數分佈圖 …………………………………… 60 圖4-7 以多種揮發性有機污染物質為示蹤劑之 SVE試驗結果與模擬結果 …………………………………… 63 圖4-8 以乙基苯為示蹤劑之SVE試驗結果與靜止區域半徑平均值 之敏感度分析 ………………………………………………… 65 圖4-9 以乙基苯為示蹤劑之SVE試驗結果與不同抽氣操作方式 之模擬分析結果 ……………………………………………… 68 圖4-10 以SF6為示蹤劑之SVE試驗結果與模擬結果 (a)為一階 交換速率係數之敏感度分析。 (b)為延散度之敏感度分析。 (c)為分配係數之敏感度分析。………………………………… 69 圖4-10(續) 以SF6為示蹤劑之SVE試驗結果與模擬結果 (a)為一階 交換速率係數之敏感度分析。 (b)為延散度之敏感度分析。 (c)為分配係數之敏感度分析。………………………………… 70 圖4-11 以不同機率密度分佈函數量化一階交換速率係數分佈, 模擬甲苯在風乾土管柱A中之傳輸試驗結果 ………………… 71 圖4-12 以不同機率密度分佈函數量化一階交換速率係數分佈, 模擬甲苯在微潮濕土管柱B中之傳輸試驗結果 ……………… 71 圖4-13 以不同機率密度分佈函數量化一階交換速率係數分佈, 模擬SF6示蹤劑之SVE試驗結果與之模擬結果……………… 72 圖4-14 以gamma機率密度分佈函數模擬土壤管柱及SVE試驗結果 之一階交換速率係數分佈圖 ………………………………… 74 圖4-15 一階交換速率係數與試驗系統寬度尺度之關係圖 ………… 76 圖4-16 靜止區域半徑與試驗系統寬度尺度關係圖 ………………… 79 圖4-17 比較SF6在SVE試驗系統之模式模擬最佳結果與由SVE試驗 系統寬度尺度計算得一階交換速率係數值之模擬結果 ……… 80 表 目 錄 表3-1 管柱試驗之實驗操作參數值與模擬參數值 ………………… 37 表3-2 現地SVE試驗場址之地質資料 ……………………………… 40 表4-1 土壤管柱試驗之模擬參數值和模擬結果 …………………… 52 表4-2 以甲苯為示蹤劑之SVE試驗結果的模擬參數值和模擬結果 56 表4-3 以SF6為示蹤劑之SVE試驗結果之模擬參數值與模擬結果 58 表4-4 七種揮發性有機化合物質的基本化學性質 ………………… 62 表4-5 模擬以多種揮發性有機污染物質為示蹤劑之SVE試驗結果時 使用的參數值與最佳模擬結果 ……………………………… 64 表4-6 以gamma機率密度分佈函數量化一階交換速率係數分佈, 模擬土壤管柱試驗與以SF6為示蹤劑之SVE試驗的最佳結果 731074444 bytesapplication/pdfen-US污染物傳輸吸附動力一階交換速率係數土壤異質性土壤蒸氣抽除(SVE)系統尺度contaminant transportsorption kineticsfirst-order exchange rate coefficientssoil heterogeneitysoil vapor extraction (SVE)system length scale[SDGs]SDG11有機物質在不均質土層中傳輸之模擬研究Modeling the Transport of Organic Compounds in Heterogeneous Soil Matrixthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62792/1/ntu-96-D87541002-1.pdf