指導教授:吳志毅臺灣大學:光電工程學研究所劉尚奕Liu, Shang-YiShang-YiLiu2014-11-262018-07-052014-11-262018-07-052014http://ntur.lib.ntu.edu.tw//handle/246246/261963薄膜顯示器成為近幾十年來顯示產業上的主流。其中,可撓性顯示器更是近年來的新寵。在當今的顯示器結構中,有機材料配合石墨烯場效電晶體被譽為被寄予厚望的新興方案之一。本文中,我們將探討交流電驅動有機發光二極體及利用新型轉印方式之化學分子修飾石墨烯場效電晶體的元件特性。 在第一部分,我們以熱蒸鍍之氟化鋰作為絕緣層製作交流電驅動有機發光二極體。此氟化鋰作為絕緣層的元件具有較低的起始電壓,相較於過去以較製程較複雜的二氧化鉿絕緣層元件,此交流電驅動有機發光二極體有相等程度的元件亮度。另外,我們利用紫外光電子能譜及反轉式電子能譜分析交流電驅動有機發光二極體元件各層的電子能階,進而解釋此元件的發光原理。利用以上能譜所得之對應電子能階,我們便可解釋元件的光及電特性。 在第二部分,我們以聚合物及非聚合物轉印方式製作利用自組裝膜修飾之基板的石墨烯場效電晶體。此電晶體經基板修飾後,能有大幅度性能上的提升。同時,我們也討論此兩種轉印方式對於元件表現的影響。我們所製作最佳的元件在室溫下具備高達11000 cm2/V∙s的載子遷移率,相較於過去文獻中以自組裝膜修飾之元件高出許多。最後,我們以混合溶液的方式進行石墨烯的參雜,進而做成P及N型石墨烯場效電晶體。In the past decades, thin film displays caught all eyes and had risen to the dominating position in display technology, as a potential branch in which flexible displays become the new favorite these days. In the present thin film display structure, organic materials along with graphene transistors are regarded as one of the potential ways to realize this concept. In this work, we investigate the device characteristics of organic light-emitting diodes (OLEDs), especially driven by alternating current (AC), and graphene field effect transistors (GFETs) with evolved transfer technique and modified substrates. In the first part, we demonstrate an AC-driven OLED with LiF insulating layers using simple thermal evaporation. The device is equipped with relatively lower turn-on voltage and favorable luminance, which is nearly identical to the devices with HfO2 insulating layers reported. Ultraviolet photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPES) are employed simultaneously in an ultrahigh vacuum (UHV) chamber to examine the electronic band structure of AC-driven OLED, which enables us to deeply investigate the operating principle of AC-driven OLED. In addition, the electronic band structure obtained fully explains optical properties and electrical characteristics of AC-driven OLEDs. In the second part, we demonstrate GFETs transferred via polymer-involved and polymer-free techniques on self-assembled monolayer (SAM)-modified substrates. The GFETs on SAM-coated SiO2 substrates all show better performance as compared to those on bare SiO2 substrates. Several verifications on the two transfer techniques are also investigated in parallel. The best GFETs on SAM-coated SiO2 substrate via polymer-free transfer technique exhibits extremely high mobility of 11000 cm2/V∙s at room temperature, which is much higher than the devices in prior researches. Furthermore, the mixed-solvent doped graphene is adopted as channels of p or n-type GFETs as well and the doping effect is considerably effective.誌謝 I 摘要 II Abstract III Contents V List of Figures IX List of Tables XIII Part 1 Device Characteristics in Alternating Current-Driven Organic Light-Emitting Diodes 1 Chap.1 Introduction 2 1.1 History of alternating current (AC)-driven organic light-emitting diodes (OLEDs) 2 1.1.1 History of OLEDs 2 1.1.2 Origination of AC-driven OLEDs 3 1.1.3 Recent development of AC-driven OLEDs 4 1.2 Basic structures and operation principle of AC-driven OLEDs 7 1.2.1 Basic structures and operation principle of OLEDs 7 1.2.2 Energy transfer mechanisms and conductive doping 10 1.2.3 ACTFEL 14 1.2.4 Basic structures and operation principle of AC-driven OLEDs 17 1.3 Research objectives 20 1.4 References 22 Chap.2 Experimental Methods and Materials 29 2.1 Experimental Materials 29 2.1.1 Insulating layers 29 2.1.2 Hole transport layer (HTL) 29 2.1.3 Electron transport layer (ETL) 30 2.1.4 P-type layer 30 2.1.5 N-type layer 31 2.2 Experimental Methods 32 2.2.1 Sample preparation 32 2.2.2 Thermal evaporation 33 2.2.3 Characterization 34 2.2.4 UPS 34 2.2.5 Inverse photoemission spectroscopy (IPES) 37 2.3 References 41 Chap.3 Mechanism of AC-driven OLED 43 3.1 Insulating layers fabrication 43 3.2 Electronic band diagram 45 3.2.1 UPS and IPES results 45 3.2.2 Electronic band diagram of AC-driven OLED 48 3.3 References 50 Chap.4 AC-driven OLED 51 4.1 AC characteristics of AC-driven OLED 51 4.1.1 Frequency-depended luminance 51 4.1.2 AC EL 52 4.2 DC characteristics of AC-driven OLED 56 4.3 Time-resolved luminance 57 4.4 References 59 Chap.5 Conclusion 60 5.1 Conclusion 60 5.2 Future work 61 5.3 References 63 Part 2 Device Characteristics in Graphene Field Effect Transistors Modified with Self-Assembled Monolayer on Silicon Dioxide Substrates 64 Chap.1 Introduction 65 1.1 History of graphene 65 1.2 Graphene fundamentals and engineering 67 1.2.1 Electrical properties and electronic band structures of graphene 67 1.2.2 Graphene transfer 69 1.2.3 Doping of graphene 71 1.3 Graphene field effect transistor (GFET) 74 1.3.1 Basic structures and characteristics of GFET 74 1.3.2 Substrate modification 77 1.3.3 P-type and n-type GFET 81 1.4 Research objectives 82 1.5 References 83 Chap.2 Experimental Methods and Materials 94 2.1 Experimental Materials 94 2.1.1 Ammonium persulfate (APS) 94 2.1.2 PMMA 94 2.1.3 ODTS 95 2.1.4 Cesium fluoride (CsF) 95 2.1.5 Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) 96 2.2 Experimental Methods 97 2.2.1 Sample preparation 98 2.2.2 Graphene transfer 99 2.2.3 Mixed solvent doping of graphene 100 2.2.4 Thermal evaporation 100 2.2.5 Characterization 101 2.2.6 Atomic force microscopy (AFM) 103 2.2.7 Contact angle goniometer 104 2.2.8 Ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS) 106 2.2.9 Raman spectroscopy 110 2.2.10 Transmission line model (TLM) measurement 111 2.3 References 116 Chap.3 Polymer-free transferred GFET 118 3.1 GFET on SiO2 substrates 118 3.1.1 UPS and XPS results of graphene on gold substrates (reference to Wei-Hsiang Lin’s work) 118 3.1.2 Raman spectroscopy of graphene 119 3.1.3 PMMA-assisted and polymer-free transferred GFET 122 3.2 GFET on ODTS-coated SiO2 substrates 125 3.2.1 ODTS-coated SiO2 substrates 125 3.2.2 UPS and XPS results of graphene 129 3.2.3 Raman spectroscopy of graphene 136 3.2.4 PMMA-assisted and polymer-free transferred GFET 138 3.3 TLM measurement for contact resistance 145 3.4 References 147 Chap.4 Mixed-solvent doping GFET 149 4.1 UPS and XPS analyses of p-type and n-type graphene on gold substrates (reference to Jan-Kai Chang’s work) 149 4.2 Mixed-solvent doping GFET 153 4.2.1 P-type GFET 153 4.2.2 N-type GFET 154 4.3 Comparison of mixed-solvent doping GFET 157 4.4 References 162 Chap.5 Conclusion 163 5.1 Conclusion 163 5.2 Future work 164 5.3 References 16613434281 bytesapplication/pdf論文公開時間:2019/08/01論文使用權限:同意有償授權(權利金給回饋學校)交流電驅動有機發光二極體光電子能譜反轉式電子能譜石墨烯場效電晶體自組裝分子薄膜無高分子材料轉印混合溶液參雜交流電驅動有機發光二極體及自組裝分子修飾石墨烯場效電晶體之特性研究Investigation of Device Characteristics in Alternating Current-Driven Organic Light-emitting Diodes and Graphene Field Effect Transistors Modified with Self-Assembled Monolayer on Silicon Dioxide Substratesthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/261963/1/ntu-103-R01941051-1.pdf