張能復臺灣大學:環境工程學研究所曾威霖2007-11-292018-06-282007-11-292018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/62687混合層高度為估計空氣污染潛勢和濃度的重要參數,其代表污染物向上擴散所能到達之最大高度,但僅利用一天兩次的例行探空觀測要準確的預測逐時混合層高度有其難度,因此本研究以能量守衡方程式及紊流動能方程式為基礎,發展出一套考量較多氣象參數之混合層預測式。 為了解此預測式之可行性及準確度,本研究針對台北、台中、高雄及高屏地區作混合層高度值的模擬,並將模擬結果與實際觀測值、CALMET氣象模組及光化學軌跡模式(TPAQM)輸出結果作比對,結果顯示均有0.80以上之高相關性;但與TPAQM計算結果間有明顯的高估或低估現象,此為Holzworth method無法考量溫度平流效應對混合層發展之影響及探空資料空間解析度不足所致;而在空間分布上,本模式所計算的混合層高度場相較於TPAQM在海陸分布上有較明顯的分野,且更能夠顯示出內陸地區混合層高度的日變化。 研究中進一步將所計算之通風指數與汙染物監測濃度作比對以了解其相互關係,結果顯示當高污染事件發生時,通風指數確實有明顯之下降,不利於污染物之擴散。 本文亦針對混合層預測式所需輸入之各參數進行敏感度分析,結果顯示Bowen Ratio為影響混合層發展最顯著的地表參數,而混合層上方位溫斜率值對於混合層高度的發展亦有相當程度之影響。Mixing layer height (MH) is an important parameter for estimating the potential and concentrations of air pollution. It stands for the highest height of pollutants diffused upward. However, it is difficult to predict hourly MH precisely only by twice upper air measurements one day. Therefore, this study is based on thermodynamic equations and kinetic energy equations of turbulence in order to develop a series of MH prediction equations with more meteorological parameters. For understanding the workability and precision of these prediction equations, at first this study not only simulates the MHs of Taipei, Taichung, Kaoshung cities and Kao-ping area but also compares these results with meteorological models of CLAMET and TPAQM. And the comparisons show the high correlation (up to 0.8) between them. When the results of MH prediction equations model are compared with TPAQM, they get higher or lower values than TPAQM. The reasons are that Holzworth method can not concern about the warm and cold advections effect and the upper air data used do not get enough finer space-spread. About the results spread on the domain of my model, they show more different MH fields between the land and the sea around and get more sharply change of the land MHs on daytime than TPAQM. Secondly, it gets ventilation index and air pollution monitoring value together to find the relationship of them. The results of it presents that when serious air pollution episode happens, the ventilation index actually decreases and the pollutants are diffused weakly. At last, this study also takes the sensitivity analyses of input parameters for the prediction equations. The result shows that Bowen Ratio is the most influencing surface parameter for the development of the MH and the same with the potential temperature lapse rate in the layer above mixing height.頁次 第一章、前言 1.1研究背景及目標......................................1-1 第二章、文獻回顧 2.1物理性參數......................................... 2-1 2.1.1地表參數..........................................2-1 2.1.1.1地表粗糙度..................................2-1 2.1.1.2地表反照率與Bowen Ratio.....................2-4 2.1.2計算氣象參數......................................2-7 2.1.2.1日間可感熱通量..............................2-7 2.1.2.2大氣穩定度.................................2-10 2.1.2.3摩擦風速...................................2-12 2.1.2.4莫寧荷夫尺度...............................2-15 2.1.2.5通風指數...................................2-16 2.2混合層高度計算方法.................................2-17 2.2.1 Zilitinkevich法.................................2-17 2.2.2 Holzworth法.....................................2-18 2.2.3 Benkley & Schulman修正法........................2-20 2.2.4 Venkatram 法....................................2-22 2.2.5聲波雷達法.......................................2-22 第三章、混合層研究及比對方法 3.1混合層預測方程式....................................3-1 3.1.1日間預測方程式....................................3-1 3.1.2夜間預測方程式....................................3-2 3.1.3海上格點處理方式..................................3-4 3.2數值計算方法........................................3-4 3.2.1前差逆流法求解預測方程式........................3-4 3.2.2邊界、初始值及網格設定..........................3-5 3.3混合層預測方程式之計算..............................3-6 3.3.1混合層上方位溫斜率之計算..........................3-9 3.3.2混合層內平均風速之計算...........................3-11 3.3.3氣象參數之時間內插...............................3-12 3.4混合層之比對來源...................................3-14 3.4.1 MTP5-即時探空剖面觀測資料.......................3-14 3.4.1.1觀測方法介紹...............................3-14 3.4.1.2混合層計算方式.............................3-15 3.4.2 高屏、高雄縣探空實測資料........................3-18 3.4.2.1觀測方法介紹...............................3-18 3.4.2.2混合層計算方式.............................3-20 3.4.3 Holzworth法計算結果比對.........................3-20 3.4.4 CALMET氣象前處理模組計算結果比對................3-21 3.5 統計分析方法......................................3-22 第四章研究結果與討論 4.1模擬案例分析........................................4-1 4.2 混合層高度計算輸入參數敏感度分析..................4-62 4.3不同熱通量及摩擦風速計算程序之差異.................4-69 第五章結論與建議 5.1結論................................................5-1 5.2建議................................................5-4 參考文獻...............................................R-1 附錄A莫寧歐布荷夫尺度..................................A-1 附錄B客觀分析..........................................B-1 附錄C 乾絕熱遞減率綜合斜率法原理及方法詳細介紹.........C-1 附錄D高屏地區觀測計畫探空量測系統(DigiCORA)介紹......D-1 附錄E TPAQM模式架構圖..................................E-1 附錄F變分分析..........................................F-1 附錄G本模式與氣象模組輸出混合層高日、夜比對結果........G-1 附錄H探空實測資料比對..................................H-15211129 bytesapplication/pdfen-US混合層紊流動能方程式Bowen Ratio光化學軌跡模式Mixing heightKinetic energy equations of turbulenceTrajectory Photochemical Air Quality Model[SDGs]SDG11混合層預測方程式之研究thesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62687/1/ntu-94-R92541105-1.pdf