理學院: 數學研究所指導教授: 謝銘倫李宗儒Lee, Chung-RuChung-RuLee2017-03-062018-06-282017-03-062018-06-282016http://ntur.lib.ntu.edu.tw//handle/246246/276842本文探討在一維p-adic射影空間上的積分理論,並將其使用於建構 p-adic完備域上的對數F-crystal,主要關注在過程中自然構造出的對數多項式函數。對數多項式函數可實際應用在計算p-adic上的L-函數特殊值;準確來說,對數多項式函數在分圓點上的取值和久保田-Leopold L-函數在正整數上的特殊值有連繫。文章以推導Coleman(從Koblitz證明k=1的情形為推廣對象)描述當k為正整數時,L-函數的特殊值以及k次對數多項式關係的公式總結。In this article we discuss the integration theory on p-adic projective space of dimension 1, and apply it to construct the logarithmic F-crystal on the p-adic complete field, where polylogarithm functions occurs in a natural development. The usage of polylogarithms realize in the computation for the p-adic L-values. To be precise, valuation of the polylogarithms at primitive roots of unity is related to the special values of the Kubota-Leopold L-function at positive integers. Eventually, we conclude by deriving a formula relating the evaluation of p-adic L-functions at k to the k-th polylogarithm, which extends the formula by Koblitz, who proved the case k=1.7548151 bytesapplication/pdf論文公開時間: 2016/7/25論文使用權限: 同意無償授權Coleman積分p-adic對數F-crystal對數多項式久保田-Leopold L-函數L-函數特殊值Coleman integrallogarithmic F-crystalpolylogarithmKubota-Leopold L-functionspecial value of L-functions at positive integersColeman積分及p-adic L-函數On Coleman Integration and p-adic L-functionsthesis10.6342/NTU201600789http://ntur.lib.ntu.edu.tw/bitstream/246246/276842/1/ntu-105-R02221030-1.pdf