許永真臺灣大學:資訊工程學研究所伍妮Yuhana, Umi LailiUmi LailiYuhana2010-06-092018-07-052010-06-092018-07-052008U0001-1706200814582100http://ntur.lib.ntu.edu.tw//handle/246246/185347在許多公共設施與遊客中心,訪客協助機制能夠提供給每位訪客有用的 資訊。然而,這些資訊多為靜態且流於泛泛,因此需要有服務人員能依據訪客的位 置、興趣與偏好,提供個人化的協助。例如,當新生在參訪大學校園 時,會想要知道符合自己研究興趣的教授有空的時間,而這些資訊是可以藉由現在的情境推論而知的。研究提供一種知識表達法與推論流程,以提供訪客情境感知的協助 。我們發展了一個用以表達時間、室內地點、事件、路線 、個人資料與研究主題等概念的OWL知識本體,以及26條用來推論訪客協助的SWRL規則。從實驗結果得知,此一情境感知的推論方法,能夠用以尋找訪客 的位置、目的地、無法使用的通道、有空閒的教授、適當的會面場所 ,以及與訪客研究興趣相符的教授等。In many public facilities and tourist destinations, visitor assistance provides useful information to all visitors. While much information is generic and static, a human assistant can offer more personalized assistance by reasoning about the visitor’s location, interests and preferences. For example, a new student visiting a university campus may need information on finding the professors with matching research interests at their available times, which may be derived by reasoning about the current contexts.his research explores the knowledge representation and reasoning process required to provide context-aware assistance to the visitors. In this thesis, we have developed the OWL ontology for time, indoor location and event context, as well as for routes, personal profiles and research topics. We have constructed 26 rules in SWRL to infer context-aware visitor assistance. A sample experiment has been conducted to demonstrate our context-aware reasoning process. The proposed approach can be used to find the visitor location, destination, unavailable passage, available professors and suitable location or person based on the visitor’s research interests.Chapter 1 Introduction 1.1 Indoor Visitor Assistance . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Motivation of the Research . . . . . . . . . . . . . . . . . . . . . . . 3.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4hapter 2 Technology Overview 7.1 Modeling Context in Context Aware System . . . . . . . . . . . . . . 7.2 Knowledge Representation Language . . . . . . . . . . . . . . . . . 9.2.1 RDF and RDFS . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 N3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.1 Ontology Definition . . . . . . . . . . . . . . . . . . . . . . 12.3.2 Web Ontology Language (OWL) . . . . . . . . . . . . . . . . 14.3.3 Data modeling vs Ontology . . . . . . . . . . . . . . . . . . 16.3.4 Ontology Building . . . . . . . . . . . . . . . . . . . . . . . 19.3.5 Tools to Develop Ontology . . . . . . . . . . . . . . . . . . . 22.4 Temporal Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . 22hapter 3 Problem Scenario and Definition 25.1 Problem Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2.1 General observations . . . . . . . . . . . . . . . . . . . . . . 28.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 29hapter 4 Ontology Modeling 31.1 Knowledge and Context Analysis . . . . . . . . . . . . . . . . . . . . 31.1.1 Indoor Location . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.2 Nodes and Edges Type . . . . . . . . . . . . . . . . . . . . . 33.1.3 Person . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.1.4 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.1.5 Research Area in Computer Science . . . . . . . . . . . . . . 34.1.6 Time and Event Context . . . . . . . . . . . . . . . . . . . . 35.2 Visitor Assistance Ontology . . . . . . . . . . . . . . . . . . . . . . 35.2.1 Analysis and Design . . . . . . . . . . . . . . . . . . . . . . 35.2.2 Ontology Implementation . . . . . . . . . . . . . . . . . . . 42hapter 5 Reasoning 53.1 Rule Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.1.1 SWRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.1.2 Jena Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56.1.3 Jess Rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56.1.4 SQWRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57.2 Rules for Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 58hapter 6 Experiment 79.1 Finding a Person’s Location . . . . . . . . . . . . . . . . . . . . . . 80.1.1 Check whether person has an event or not at requested timend infer his location . . . . . . . . . . . . . . . . . . . . . . 82.1.2 Extract a person’s location . . . . . . . . . . . . . . . . . . . 84.2 Finding the right place for a specific purpose . . . . . . . . . . . . . . 85.2.1 Finding the professors who has research interest related withertain research topic. . . . . . . . . . . . . . . . . . . . . . 86.2.2 Let the salesman chooses one of them and extracts his laboratory. 87.3 Finding the right person at the right time . . . . . . . . . . . . . . . . 88.3.1 Extract the list of the events. . . . . . . . . . . . . . . . . . . 89.3.2 Infer busy status for professors who have an event at requestedime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90.3.3 Infer match professors who are available at requested time . . 90.3.4 Let visitor choose one of them and infer the location of choosenrofessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.4 Getting Unavailable Passages. . . . . . . . . . . . . . . . . . . . . . 91.4.1 Infer locked status to be true . . . . . . . . . . . . . . . . . . 91.4.2 Extract unavailable route segment. . . . . . . . . . . . . . . . 92hapter 7 Conclusion 95.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 95.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96ibliography 972966429 bytesapplication/pdfen-US知識本體推理情境感知訪客指引ontologyreasoningcontext awarevisitor assistance知識本體與推理於情境感知訪客指引之研究Ontology and Reasoning for Context-Aware Visitor Assistancethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/185347/1/ntu-97-R95922173-1.pdf