顏家鈺臺灣大學:機械工程學研究所李宜霖Lee, Yi-LinYi-LinLee2007-11-282018-06-282007-11-282018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/61056本篇論文提出一種新式的六個自由度磁浮平台系統與其控制方法。基本的設計概念是藉由螺線管排列而成的陣列(定子)創造出一個穩定的區域,使得其上的磁鐵平台(轉子)可以達成二維長行程的移動。當此平台離開所設定的平衡位置時,螺線管會分別被電流驅動產生恢復力,使得平台回到平衡位置,我們可以藉由移動此穩定區域使得平台也跟著移動。透過有限元素分析軟體ANSOFT模擬螺線管力量的結果,我們設計出新式磁浮平台系統硬體的部分,包括機構和如何排列螺線管,接著,我們建立了磁浮平台系統的數學模型,藉由電腦模擬的結果,我們得到了控制的參數。最後,我們成功地達成磁浮平台三維的控制,包括位移和高度,此外,在本篇論文的章節中也介紹了伺服控制器的設計。This thesis addresses the control issue in a novel single-deck six degree-of-freedom (DOF) magnetic levitation (maglev) stage. The basic design concept for the single-deck platform is to achieve long range 2-DOF movement by creating a stable trap region for the rotor stage above the stator array of solenoid coils. The solenoids are excited separately to generate restoring forces when the platform with permanent magnets is displaced from its equilibrium position. One can then switch the coils to move the trap region and hence move the stage around. This research uses the ANSOFT finite element analysis simulation results to analyze the solenoid forces and to help us come up with the hardware design of the novel maglev system including the mechanism and the arrangement of the solenoids. Then, we establish the mathematical model of the novel maglev system with 6-DOF and to simulate this system by means of computers and get the control parameters. Besides much skepticism, previous efforts from the NTU PSCL laboratory have demonstrated that the concept should be feasible. In this thesis, we have successfully achieved stable three-dimensional position and attitude control. The thesis describes the mechanical design aspect of the stage. The chapters also describe the process of active servo control design that achieves the stable attitude control.Abstract I Table of Contents III List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Maglev Technology Survey 2 1.2.1 Diamagnetism 2 1.2.2 Rotating Field 4 1.2.3 Oscillating Field 4 1.2.4 Feedback Control 6 1.3 Contribution 7 1.4 Overview of the Thesis 8 Chapter 2 Fundamental Issues 9 2.1 Basics of Electromagnetic Field Theory 9 2.1.1 Vector Magnetic Potential 9 2.1.2 Biot-Savart Law 11 2.2 Properties of Permanent Magnets 12 2.3 Interaction between permanent magnets and coils 14 Chapter 3 Design Concepts 17 3.1 Simulations and Analyses 17 3.1.1 The Procedure of Simulation 17 3.1.2 Simulation of the Circular Magnet 19 3.2 Basic Design Concept of Planar Maglev System 25 3.2.1 Conception of the Novel Planar Maglev System 25 3.2.2 Design of the stable region 27 Chapter 4 Experiments 33 4.1 The Maglev Planar Motion System 33 4.1.1 Hardware 33 4.1.2 Permanent Magnets 37 4.1.3 Implementation 39 4.2 Force Experiments 44 Chapter 5 Modeling and Controller Design 52 5.1 Modeling 53 5.2 PID Control 56 5.2.1 Introduction 56 5.2.2 Digital PID Control 58 5.3 Tracking Sliding Mode Control 59 5.3.1 Introduction 59 5.3.2 Control Algorithm 60 5.3.3 Digital Tracking Sliding Mode Control 61 Chapter 6 Numerical Simulations and Experimental Results 63 6.1 Numerical Simulations 63 6.1.1 PID Control 63 6.1.2 Combination of Tracking Sliding Mode and PID Control 69 6.2 Experimental Results 74 6.2.1 PID Control 74 6.2.2 Combination of T-SMC and PID control 82 Chapter 7 Conclusions 88 Reference 903444986 bytesapplication/pdfen-US永久磁鐵平面磁浮磁浮系統螺線管PID控制器滑動模式控制器permanent magnetsplanar maglevmagnetic levitationsolenoidsPID controlsliding mode control二維磁浮平台驅動伺服設計The Active Servo Control of a Single-Deck Planar Maglev Stagethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61056/1/ntu-95-R93522819-1.pdf