李世光臺灣大學:應用力學研究所陳逸文Chen, YiwenYiwenChen2007-11-292018-06-292007-11-292018-06-292005http://ntur.lib.ntu.edu.tw//handle/246246/62488表面電漿共振(Surface Plasmon Resonance, SPR)技術是將光從介電質材料中入射至金屬表面時,會產生垂直於界面的表面電漿波(Surface Plasmon Wave, SPW),此表面電漿波於垂直界面的強度呈現漸逝波形式的指數衰減,且在共振角的情況下會使入射光的反射光強產生最小值,反射光之相位也會有明顯之相位延遲現象,而此一共振角度與相位延遲量與介電質之介電常數有直接關係。運用此一原理所發展的表面電漿共振儀系統光學偵測方式可分為:波長調制法、光強調制法、角度調制法以及相位調制法,且這四種方法已大量被使用於量測薄膜厚度變化、氣體或液體的折射率改變以及生化反應所造成之光學性質改變。 本研究中延續研究團隊之經驗,利用拋物面反射鏡與球面反射鏡之數學特性,配合伺服馬達之控制,可使入射角精準度可達0.001度,藉由旋轉分析板五步相移之解相位方式,本研究成功的架構出一小體積、低成本且同時具有大動態量測範圍之角度調制式與高理論解析度之相位調制式表面電漿共振儀系統。雖然在縮小體積的思維下小體積的二極體雷射光源的不穩定性造成系統之解析度降低,但藉由數據之數學計算與分析和不同濃度的酒精量測試驗,可得出此系統具有量測小數點以下四位的折射率變化的解析度,並以實際量測不同濃度之血糖標準試液,得到隨著濃度的增加相位差亦隨之增加且優於角度調制式表面電漿共振儀的結果;為延伸本系統之生醫量測能力,本實驗亦成功驗證本系統於ELISA生物量測實驗的能力。 新式電化學檢測技術為本研究的另一研究主軸,承接研究團隊所提出之新式電化學檢測方法,本研究以輸入弦波電壓為主要供電模式,將血糖酵素檢測試片以及不同濃度之葡萄糖標準試液作為主要待測樣本,驗證此新式電化學檢測方式在血糖檢測中具有高度之重複性,且與傳統電化學血糖檢測方式相比,此供電模式具有更高度之電流反應表現,藉由調整弦波電壓之頻率與振幅即可得到比傳統供電模式更高之線性度以及解析度更高之濃度與電流關係;在研究中也以數學積分之方式得到另一可測量血糖濃度之參考方式,亦驗證其優於傳統供電方式之表現。此外,以本研究之光機系統量測不同濃度之血糖標準試液,觀察其表面電漿共振角之改變與相位變化,使本光機系統於醫療檢測上有更寬廣之應用。Surface plasmon resonance (SPR) phenomenon for sensing application has been developed for almost two decades. When a light beam impinges onto the interface between the dielectric media and metal media, a surface plasmon wave is produced. The surface plasmon wave is also an evanescent wave and the intensity that is perpendicular to the interface is exponentially decayed. At the SPR angle, the intensity of the reflective light beam will appear to have a minimum value and the phase will present a phase delay phenomenon. The value of the SPR angle and phase delay correlate with the permittivity of the media. By applying this principle, there are four optical configurations developed which are wavelength modulation, intensity modulation, angular modulation and phase modulation. These four methods have been widely used in measuring the thickness variation of thin film, the reflective index change of liquid or gas samples and the biomolecular interaction. During the course of this study, we extend our research team’s many years optical system design experience and employ a paraboloidal mirror, a spherical mirror, and a precision servomotor control. The 0.001 degrees accuracy incident angle can be easily achieved. By rotating an analyzer and five steps phase shift method, a small volume and low cost optical system is presented. This system has angular modulation function which has large dynamic measuring range and phase modulation function which has high theoretical resolution at the same time. Although the instability of the small volume laser diode module decreases the resolution of the system, by using mathematical analysis and different concentrations alcohol experiments, the system has been proved to have 10-4 resolution in measuring reflective indices. By measuring different glucose concentrations standard solutions, the study verify the system has the ability of glucose detection which is even better than angular modulation mode SPR instrument. In order to expand the biomedical detection ability of this system, the study also proves the capability of ELISA experiment of the system successily. A novel electro-chemistry method is another issue discussed in this study. Extending the research of our research team, externally applied sine wave voltage was adopted in this study. With enzymatic strip and different glucose concentrations standard solutions, the new voltage applied method was proved to have high repeatability and even better current performance than that of the traditional method. By modulating the frequency and the amplitude of the externally applied sine wave voltage, a higher linearity and current to concentration relation can be obtained. By integrating the current, another newly developed glucose concentration relation is also developed, which found to have better performance than that of the traditional method. With an attempt to expand the application of this newly developed optical system, the newly developed biosensor presented in this dissertation is tested to pursuer glucose concentration as well.致謝 i 中文摘要 iv Abstract vi 目錄 viii 圖目錄 xiv 表目錄 xv 第 1 章 緒論 1 1-1 研究背景 1 1-2 生醫檢測系統 4 1-2-1 表面電漿共振技術之研究與應用 5 1-2-2 血糖檢測之研究背景與應用 6 1-3 研究動機 9 第 2 章 電化學檢測技術及血糖偵測 11 2-1 現行血糖檢測方式 11 2-1-1 侵入式與半侵入式 11 2-1-2 非侵入式 13 2-2 化學及電化學式血糖分析方法 15 2-2-1 還原法(reducing method) 15 2-2-2 縮合法(condensation method) 16 2-2-3 酵素法(enzymatic methods) 17 2-3 基本電化學分析 18 2-3-1 質傳效應(mass transfer effects) 19 2-3-2 階梯電位伏安法(Potential Step Voltammetry) 20 2-3-3 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 23 2-4 新式電化學檢測法 25 2-4-1 現有電化學葡萄糖檢測技術 25 2-4-2 新式電化學檢測機制 27 2-4-3 新式電化學檢測之實驗架構與流程 28 第 3 章 生醫晶片檢測儀之原理 31 3-1 表面電漿共振技術原理 31 3-1-1 表面電漿波(Surface Plasmon Wave, SPW)與色散關係(dispersion relation) 31 3-1-2 表面電漿共振(Surface Plasmon Resonance, SPR) 34 3-1-3 表面電漿共振之激發 35 3-1-4 表面電漿共振之偵測方式 41 3-2 光相位偵測方式 44 3-2-1 圓偏光干涉術(quadrature) 45 3-2-2 相移干涉術(phase shifting interferometry) 48 第 4 章 相位式表面電漿共振儀之研製 55 4-1 系統設計理念 55 4-2 光機系統 55 4-2-1 圓偏光干涉儀 56 4-2-2 旋轉分析板解相位干涉儀 59 4-3 硬體控制、電源電路設計與信號處理 61 4-3-1 變入射角控制分析 62 4-3-2 電源供應與電子電路設計 63 4-3-3 信號擷取與放大 65 4-3-4 溫度感測及控制系統 66 4-4 表面電漿技術信號模擬 67 第 5 章 實驗結果與討論 71 5-1 圓偏光干涉儀相位擷取 71 5-2 旋轉分析板解相位干涉儀相位擷取 73 5-2-1 表面電漿共振角測定 73 5-2-2 相位偵測重複性量測 74 5-2-3 不穩定現象討論 76 5-2-4 系統實驗流程 80 5-2-5 系統測試及量測結果 81 5-3 電化學檢測方式 88 5-3-1 直流電壓檢測 88 5-3-2 弦波電壓檢測 91 5-3-3 直流電壓與弦波電壓比較 96 第 6 章 結論與未來展望 99 6-1 結論 99 6-2 未來展望 100 第 7 章 參考文獻 104en-US表面電漿共振電化學檢測血糖干涉術surface plasmon resonanceelectro-chemistryglucoseinterferometry相位偵測式多功生醫晶片儀與電化學檢測儀之研發:以血糖檢測為研發平台R&D on a Multi-functional Phase Detection Biomedical Instrument and an Electrochemical Biochip Tool for Glucose Detectionthesis