葉力森臺灣大學:獸醫學研究所梁碩麟Liang, Sao-LingSao-LingLiang2007-11-282018-07-092007-11-282018-07-092005http://ntur.lib.ntu.edu.tw//handle/246246/60026摘 要 臺灣獼猴是臺灣本地唯一特有種的非人類靈長類動物,有關臺灣獼猴的研究,在解剖學、行為科學、生態學及傳染病學上,已經有許多報告,但對於臺灣獼猴本身的心血管生理學的研究,則付之闕如。有關其他種非人類靈長類動物的心血管生理學方面的研究,如心電圖學、放射線學及心臟超音波學等,也都有研究報告,但有關臺灣獼猴的這方面生理功\\\能則仍尚未被研究發表。此次研究主要針對飼養於台北市立動物園的三十八隻臨床上無任何異常的臺灣獼猴,進行相關的心電圖、胸腔放射線學以及心臟超音波學等研究。這些臺灣獼猴的平均體重為10kg,體重範圍由4kg至22.6kg;動物年紀由2歲至16歲,平均年紀為6.9歲。在心電圖方面,有關臺灣獼猴心電圖的各項波形測量(心跳速率、P wave、PR interval、QRS complex、QT interval、ST segment以及MEA)都在此次研究被建立,包括心跳速率其平均值為126±20 beats/minute,P wave 時間為42±7.8 msec,PR interval 時間為97±12 msec,QRS complexes 時間為43±6.7 msec以及QT interval 時間為 296±41.4 msec。如同其他非人類靈長類動物一般,臺灣獼猴的心臟節律為竇性節律。在比較性別、年紀及體重對心電圖的各項波形測量是否有產生差異性方面,結果無出現明顯差異性。在以PR interval 與QT interval 的時間與心跳速率倒數進行線性回歸分析中,PR interval 與QT interval 會隨著心律快慢而隨之變化;且由於R2值的不同,心跳速率的變化並無法充分解釋PR interval 時間的變化,但心跳速率的變化可充分解釋QT interval 時間的變化。在胸腔放射線檢查方面,本研究之目的在評估臨床正常臺灣獼猴於胸腔X光片中心臟的大小,以提供一快速、方便的方法於臨床上評估心臟大小。利用胸腔X光片計算心胸比的數值,其平均值為52.8±4.4 %。在評估不同性別與年紀是否會對心胸比造成明顯差異方面,發現並無明顯差異性存在。利用胸腔X光片計算心臟體積與體重、體表面積是否具有明顯的線性關係,發現確實與體重及體表面積確實具有差異性的線性關係存在(P<0.001)。在心臟超音波方面,有關心臟結構的相關測量數據,發現包括LVLed、IVSed、LVed、LVPWed、IVSes、LVes、LVPWes、LVOTd及MVed等,都與體重及體表面積呈現相關性,並且具有高的R2數值。另外在計算左心室功能的收縮率方面,發現其平均值為36.8±7.19 %。有關主動脈、肺動脈以及二尖瓣血液流入速率等測量,其血流速率平均值分別為1.34±0.406、1.01±0.145 和 0.89±0.144 m/sec。有關左心室腔室的測量,無論是左心室質量(LVM)、左心室收縮腔室(LVsv)、左心室舒張腔室(LVdv)、心臟排出容積(stroke volume)以及心輸出量(cardiac output)都與體重及體表面積呈現明顯的線性及對數線性關係。但由於具有不同的R2數值,體重與體表面積的變化並無法充分解釋LVsv、stroke volume以及cardiac output的變化,而體重與體表面積的變化則可充分解釋LVM及LVdv的變化。Abstract The Formosan macaque (Macaca cyclopis) is a threatened species, endemic to Taiwan. The studies of Macaca cyclopis in the anatomy, behavior, ecology and infectious disease were abundant, but the available literature in the cardiovascular physiology is limited. The data of cardiovascular physiology including electrocardiogram, radiogram and echocardiogram for other nonhuman primates were reported, but not yet for Formosan macaques. Total thirty-eight clinically normal Formosan macaques (20 females, 18 males) undergoing routine annual health examinations performed electrocardiographic, radiographic and echocardiographic examinations at the Taipei City Zoo. They weighted between 4 and 22.6 kg with an average weight of 10 kg. The mean age of animals was 6.9±4.1 years old with range of 2 to 16 years. In electrocardiogram, the results of parameters (heart rate, P wave, PR interval, QRS complex, QT interval, ST segment and MEA) were established in this study. The values of parameters of ECGs presented as heart rate with a mean 126±20 beats/minute, P wave duration with a mean 42±7.8 msec, PR interval with a mean 97±12 msec, QRS complex duration with a mean 43±6.7 msec and QT 296±41.4 msec. Like other nonhuman primates, the rhythm of Formosan macaques was sinus rhythm. Significant differences between males and females, juveniles (<7 years old) and adults (≧7 years old), lighter body weight (≦10kg) and heavier body weight (>10kg) were not found for ECG parameters. The PR and QT interval varied with the heart rate as in our study’s PR=(1/HR), QT=(1/HR) linear regression models. Owing to different values of R2 in linear regression models, the change of the heart rate could poorly explain the change of PR interval, but highly explain the change of QT interval. In radiogram, the aim of this study was to evaluate the cardiac size in clinically normal Formosan macaques with radiographic examinations and provide a quick, convenient tool to examine the cardiac size clinically. The values of cardiothoracic ratio of radiograms presented with a mean 52.8±4.4 %. Comparison of cardiothoracic ratio between female (52.0±4.14 %) and male (53.8±4.68 %), juvenile (<7 years old) (51.2±3.96 %) and adult (≧7 years old) (54.2±4.40 %) did not present significant differences. The linear regression models between cardiac volume and body weight, cardiac volume and body surface area showed significant influences (p<0.001). In echocardiogram, the parameters of cardiac anatomy including LVLed, IVSed, LVed, LVPWed, IVSes, LVes, LVPWes, LVOTd, and MVed showed a significant levels (p<0.0001) and high R2 values in linear and log-linear regression models with body weight and body surface area. The shortening fraction of left ventricle function presented with a mean 36.8±7.19 %. The velocity of Aorta, pulmonary artery and mitral valve inflow showed a mean 1.34±0.406, 1.01±0.145 and 0.89±0.144 m/sec, respectively. The calculation of left ventricle volume including left ventricle mass, left ventricle systolic volume, left ventricle diastolic volume, stroke volume and cardiac output presented a significant levels (p<0.05) with body weight and body surface area in linear and log-linear regression models with body weight and body surface area. Owing to different values of R2 in linear and log-linear regression models, the change of body weight and body surface area could poorly explain the change of left ventricle systolic volume, stroke volume and cardiac output, but highly explain the change of left ventricle mass and left ventricle diastolic volume.目錄 頁次 中文摘要……………………………………………………………………… 7 英文摘要……………………………………………………………………… 9 第一章 前言與研究動機 …………………………………………………… 11 第二章 文獻探討 第一節 臺灣獼猴簡介……………………………………………… 12 第二節 非人類靈長類動物的比較醫學現況……………………… 15 第三節 心電圖檢查(Electrocardiography)……………………… 20 第四節 胸腔放射線檢查(Chest radiography)…………………… 24 第五節 心臟超音波檢查(Echocardiography)…………………… 29 第三章 研究材料與研究方法 第一節 臺灣獼猴…………………………………………………… 36 第二節 血液學及血液生化學檢查………………………………… 38 第三節 心電圖檢查(Electrocardiography)……………………… 39 第四節 胸腔放射線檢查(Chest radiograph)及X光片中心臟大 小的測量方法……………………………………………… 40 第五節 心臟超音波檢查(Echocardiography)及心臟超音波影像 資料的分析………………………………………………… 42 第六節 統計分析方法……………………………………………… 48 第四章 研究結果 第一節 血液學及血液生化學檢查………………………………… 49 第二節 心電圖檢查(Electrocardiography)……………………… 50 第三節 胸腔放射線檢查(Chest radiography)…………………… 53 第四節 心臟超音波檢查及都卜勒超音波檢查(Echocardiographic and Doppler examinations)………………………………… 55 第五章 研究討論與結論 第一節 血液學及血液生化學檢查………………………………… 56 第二節 心電圖檢查(Electrocardiography)……………………… 58 第三節 胸腔放射線檢查(Chest radiography)…………………… 61 第四節 心臟超音波檢查及都卜勒超音波檢查(Echocardiographic and Doppler examinations)………………………………… 64 文獻探討………………………………………………………………………… 67 圖表目錄 頁次 Fig. 1: The position of anesthetized Formosan macaques performed electrocardiographical and echocardiographic examinations with bedside monitoring…………………………………………………. 79 Fig. 2: Typical Formosan macaques electrocardiogram tracing (1.0mV/cm; 25mm/sec)…………………………………………………………. 80 Fig. 3: An electrocardiogram of a Formosan macaque presented as respiratory oscillation effects on amplitudes of QRS complexes…… 81 Fig. 4: Scatter plot and regression line of QT interval vs. 1/HR in Formosan macaques. The regression equation, R2 value and associated significance level for simple linear regression are displayed with scatter plot results…………………………………… 82 Fig. 5: Method of calculation cardiothoracic ratio o chest radiograph. Cardiothoracic ratio (=(MLD+MRD)/ID) equals the ratio between the maximum transverse diameter of the heart divided by the maximum width of the thorax. ML, (midline); MLD, (maximal left dimension of heart); MRD, (maximal right dimension of heart); ID, (internal maximal thoracic dimension)…… 83 Fig. 6: Method of measuring cardiac volume (=L×B×D×K) on ante-posterior and lateral chest radiograms. On ante-posterior chest film, L and B are measured. L is the long diameter of the heart defined by a segment extending from the junction of the right atrium and vena cava on the upper part of the right border of the heart obliquely downward to the apex on the left where the left ventricle meets the diaphragm. B is the broad diameter of the heart defined as the segment perpendicular to L, extending roughtly from the junction of the right atrium and right hemidiaphragm obliquely upward to the junction of the left pulmonary artery and left atrium. B, (broad diameter); K, (constant (see text)); L, (long diameter)……… 84 Fig. 7: Method of measuring cardiac volume (=L×B×D×K) on ante-posterior and lateral chest radiograms. On later chest film, D is measured. D is the maximal cardiac dimension or depth of the heart on lateral view…………………………………………………………………. 85 Fig. 8: Two-dimensional echocardiographic still frame obtained from the apical window showing a four chamber view. Site of measurement for left ventricular length (LVLed) (B) and mitral valve inflow diameter (MVed) (A) are demonatrated……………………………………… 86 Fig. 9: Left panel: Two-dimensional echocardiographic still frame of the left ventricular short axis obtained from the parasternal window at the tip of the papillary muscles. Right panel: Two-dimensionally targeted M-mode echocardiogram obtained from the left image. From this tracing measurement of LVed (A), LVes (B), IVSed (C), IVSes (D), LVPWed and LVPWes were obtained………………………………. 87 Fig. 10: Two-dimensional echocardiographic still frame demonstrating the site of measurement of the LVOTd……………………….………… 88 Fig. 11: Left panel: Two dimensional echocardiographic still frame of the left ventricular long axis obtained from the parasternal window at the level of the aortic valve. Right panel: Two-dimensionally targeted M-mode echocardiogram obtained from the left image. From this tracing measurement of aortic root diameter (MAo) (B), Aortic valve leaflet excursion (MAV) (A) and left atrial (MLA) (C) diameter can be obtained……………..…………………………………………….… 89 Fig. 12: Two-dimensional echocardiographic still frame depicting the site of measurement of the Aortic velocity from the subcostal window…… 90 Fig. 13: Left panel: Two-dimensional echocardiographic still frame depicting the site of measurement of the aortic velocity from the subcostal window. Right panel: Simultaneous recording of an electrocardiogram (ECG) and pulsed wave aorta Doppler obtained from the subcostal window with the sample volume placed at the aorta………………… 91 Fig. 14: Simultaneous recording of an electrocardiogram (ECG) and continuous wave aortic Doppler obtained from the subcostal window at Fig. 13… 92 Fig. 15: Two-dimensional echocardiographic still frame depicting the site of measurement of the main pulmonary artery diameter (MPAd) from the parasternal window………………………………..………… 93 Fig. 16: Left panel: Two-dimensional echocardiographic still frame depicting the site of measurement of the pulmonary artery velocity from the parasternal window. Right panel: Simultaneous recording of an electrocardiogram (ECG) and pulsed wave pulmonary artery Doppler obtained from the parasternal window with the sample volume placed at the same location where the MPAd was measured………...... 94 Fig. 17: Simultaneous recording of an electrocardiogram (ECG) and continuous wave pulmonary artery Doppler obtained from the parasternal window at Fig. 16………………………………………… 95 Table 1: Baseline blood biochemistry values in healthy Formosan macaques… 96 Table 2: Baseline haematology values in healthy Formosan macaques……….. 97 Table 3: The results of electrocardiograms in Formosan macaques…………… 98 Table 4: Electrocariogram parameters obtained from the analysis of Formosan macaques…………………………………………………………… 100 Table 5: The values of ECG parameters in male and female Formosan Macaques…………………………………………………………….. 101 Table 6: The values of ECG parameters in Formosan macaques with various body weight………………………………………………………….. 102 Table 7: The values of ECG parameters in different ages of Formosan Macaques…………………………………………………………… 103 Table 8: The relationship of PR and QT intervals to an increase in the heart rate…………………………………………………………………… 104 Table 9: The results of cardiothoracic ration and cardiac volume in the thoracic cardiographs of Formosan macaques………………………………… 105 Table 10: The cardiothoracic ratio of Formosan macaques and related to various gender and age…………………………………….………… 106 Table 11: The formula of linear regression model as cardiac volume= f (body weight), cardiac volume=f (body surface area)……………… 107 Table 12: Left ventricular chamber geometry measured by echocardiography... 108 Table 13: Doppler parameters measured by Doppler echocardiography……… 109 Table 14: Echocardiographic parameters with a correlation against body weight in linear model……………………………………………..… 110 Table 15: Echocardiographic parameters with a correlation against body surface area in linear model………………………..………………… 111 Table 16: Echocardiographic parameters with a correlation against body weight in multiplicative model…………………………….………… 112 Table 17: Echocardiographic parameters with a correlation against body surface area in multiplicative model……………………….………… 113 Table 18: Left ventricle mass (LVM), left ventricle systolic volume (LVsv), left ventricle diastolic volume (LVdv), stroke volume (SV) and cardiac volume (CO) with a correlation against body weight in linear model………………………………………………………………… 114 Table 19: Left ventricle mass (LVM), left ventricle systolic volume (LVsv), left ventricle diastolic volume (LVdv), stroke volume (SV) and cardiac volume (CO) with a correlation against body surface area in linear model…………………………………………………………. 115 Table 20: Left ventricle mass (LVM), left ventricle systolic volume (LVsv), left ventricle diastolic volume (LVdv), stroke volume (SV) and cardiac volume (CO) with a correlation against body weight in multiplicative model…………………………………………………. 116 Table 21: Left ventricle mass (LVM), left ventricle systolic volume (LVsv), left ventricle diastolic volume (LVdv), stroke volume (SV) and cardiac volume (CO) with a correlation against body surface area in multiplicative model…………………………………………………. 1175721911 bytesapplication/pdfen-US心電圖胸腔放射線心臟超音波臺灣獼猴非人類靈長類動物electrocardiographychest radiographyechocardiographyFormosan macaquesnonhuman primates[SDGs]SDG3臺灣獼猴血液學、血液生化學及心臟生理特性之研究The Study of Characteristics of Hematology、Blood Biochemistry and Cardiac Physiology in Formosan Macaques (Macaca cyclopis)thesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/60026/1/ntu-94-D86629002-1.pdf