管傑雄臺灣大學:電機工程學研究所徐豐源Hsu, Feng-YuanFeng-YuanHsu2007-11-262018-07-062007-11-262018-07-062005http://ntur.lib.ntu.edu.tw//handle/246246/53173本實驗基於差動共焦顯微術與光鉗技術的原理,建立了倒立式內嵌光鉗差動共焦顯微鏡的實驗系統,並對系統進行測試、校正與特性量測。其中差動共焦顯微術利用共焦顯微術中訊號對樣品表面高度的反應曲線中的線性區,將樣品表面的微小高度變化作高倍率的線性放大,其縱向解析率可達數奈米,較傳統共焦顯微術提高百倍以上;而動態量測範圍達數微米(由物鏡的數值孔徑決定),具有極佳的量測優勢。由於系統是開迴路設計,因此具有高速的位置量測能力,而配合高解析率的橫向位移檢測元件,可以得到十奈米解析率左右的三度空間定位能力。此外,可以與螢光或光鉗系統結合進行量測。我們對系統雜訊進行分析,得到80 dB的差動共焦訊躁比。在縱向解析率的測試中,以波長633 nm的光源,60X, NA = 0.85物鏡量測得到了約2 nm的結果。 而光鉗是單一光束所造成的光學嵌住,是利用光子動量轉移所造成的作用力來抓取微小物體,可用來操控微米級甚至奈米級的微小物體。其主要優點是非接觸性與非侵入性。光鉗最具應用潛力之處,是可以和顯微鏡結合成內嵌式光鉗,賦予顯微鏡對於觀察目標的操控能力。而後將紅外線雷射光鉗系統結合至差動共焦顯微系統中,本論文亦描述了光學嵌住的基本原理,包括幾何光學模型與電磁波模型,並推導光學嵌住力大小與嵌住力的空間分佈。本論文架構的倒立式的內嵌光鉗差動共焦顯微鏡,使用了四象限二極體進行橫向位移偵測,再結合差動共焦顯微鏡的縱向解析率,進而量測小球動態行為,來估算了光鉗的彈力常數,也得到了光鉗的縱向散射力與橫向梯度力。An inverted optical tweezer embedded differential confocal microscope system is developed, based on the principle of differential confocal microscopy and optical tweezer theory, in this thesis. The system is constructed and characterized. The main features of differential confocal microscopy include high depth resolution, large dynamic range, long working distance and high acquisition rate. The depth resolution of differential confocal microscopy is only limited by system noise. In the system build in this thesis, a depth resolution of several nanometers has been achieved. The dynamic range is as large as several micrometers, determined by wavelength of light source and numerical aperture of objective lens. Since probing the sample with far-field optical wave and without closed-loop locking the height of sample surface, differential confocal microscopy has advantage of high acquisition rate. By collaborating with lateral detection element, resolution of ten nanometers in three-dimensional positioning has also been verified in the system. The signal to noise ratio of differential confocal signal is measured as high as 80 dB. If the wavelength is 633 nm, using the objective lens of 0.85 numerical aperture, the depth resolution is two nanometers. Optical tweezer, as known as single beam optical tarp, grabs small particles of micrometer-size even nanometer-size by the force from photo momentum transfer. The main features of optical tweezer are non-contact and non-invasive. By combining optical tweezer and optical microscopes, one can manipulate the observed object in the microscopic scale. Ray optics model and electromagnetics model describe the model of optical trap, and the mathematical theory and simulation of ray optics model are introduced in this thesis. Inverted configurations of optical tweezer embedded differential confocal microscopes are constructed. The spring constant k of optical tweezer is characterized in this system. And a quadrant photodiode is used to perform detection of lateral displacement. Combining with the depth resolution power of differential confocal microscope, three-dimensional positioning of a micro-sphere has been verified. With the spring constant k, the gradient force is estimated in the experiment. And we also point out the relationship between laser power and the gradient force.中文摘要..................................................I 英文摘要................................................III 目錄......................................................V 表目錄索引..............................................VII 圖目錄索引.............................................VIII 第一章 序論 1-1. 前言.............................................1 1-2. 研究動機及目的...................................5 1-3. 論文架構.........................................9 第二章 差動共焦顯微術及光鉗之原理與理論 2-1. 差動共焦顯微術原理..................................11 2-1-1. 共焦顯微術原理....................................12 2-1-2. 差動共焦顯微術原理................................17 2-2. 差動共焦顯微術之理論模型 2-2-1. 單色光成像之數學模型............................21 2-2-2. 共焦成像之數學模型..............................26 2-3. 光鉗的原理..........................................32 2-4. 光鉗的理論模型......................................35 2-4-1. 幾何光學模型......................................36 2-4-2. 電磁波模型........................................43 第三章 系統架構與實驗方法 3-1. 系統架構 3-1-1. 差動共焦顯微術的實驗架構..........................46 3-1-2. 結合光鉗後的實驗架構..............................49 3-2. 實驗儀器與光學元件..................................57 3-3. 樣本製備............................................63 第四章 實驗結果分析及討論 4-1. 訊噪比測試..........................................66 4-2. 系統測試 4-2-1. 縱向反應曲線量測..................................67 4-2-2. 系統縱向解析度與動態範圍量測......................69 4-3. 微粒小球的光學嵌住..................................75 4-4. 捕捉力的分析 4-4-1. 光鉗縱向力的量測與分析............................81 4-4-2. 光鉗橫向力的量測與分析............................82 第五章 結論..............................................93 參考文獻.................................................951865591 bytesapplication/pdfen-US差動共焦顯微術光鉗Differential Confocal MicroscopyOptical Tweezer倒立式內嵌光鉗差動共焦顯微術系統之設計與裝置Design and Setup of Inverted Optical Tweezer Embedded Differential Confocal Microscopy Systemthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/53173/1/ntu-94-P92921011-1.pdf