2009-11-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/713958摘要:本計畫將以三年的時間執行有機無機混成薄膜太陽能電池之研究。計畫內容包含了兩大創新研究方向共七個子題;這兩大創新研究方向分別為「三明治結構混成薄膜太陽能電池之創新研究」與「高效率、低成本、新穎的有機無機混摻太陽能電池材料的創新研究」。這兩大方向共包含了無機-有機三明治結構之研發(子計畫一)、效率提升之介面研究(子計畫二)、封裝技術(子計畫三)、混成太陽能電池之創新材料研究(子計畫四)、混成材料結構與型態的研究(子計畫五)、混成太陽能電池之物理特性(子計畫六)、太陽能電池在建築的應用(子計畫七)等。主要概念為使有機材料夾於雙層無機材料之混成薄膜太陽電池,可以保護夾在其中的有機吸光層,讓有機吸光層&#63847;受環境氣體影響。同時以無機半導體材&#63934;做為電子或電&#64005;阻擋層/傳輸層,不僅可以提供較高的載子遷移&#63841;,更使電子和電洞被強迫往不同方向分離,避免在傳輸過程中發生再復合作用。重要的是,我們將開發出以溶液製程的方式在大氣下製作無機半導體材&#63934;,大幅降低製作成本。此外藉由光電子能譜來研究有機光電半導體的表面/介面的性質,以及電子和電洞在有機光電半導體間以及與電極之間的傳導過程,經由能階的變化資訊可提供改善的方向。我們將同時引入有機與無機材料來進行封裝膜的開發,藉此低溫有機/無機混成膜封裝技術我們將能提供有機薄膜太陽能電池或有機/無機混成太陽能電池有效的水、氧阻絕與保護。我們也將由實驗與理論模擬共進的方法,得到高太陽光吸收及能階匹配的新穎高分子、奈米粒子、介面改質劑及創新材料元件結構的製作,使效率達到8~10%,價格低於US$50/m2或US$1.0/W可以提供電力使用,並研究應用到建築上的可行性。<br> Abstract: Our team will focus on the development of organic/inorganic hybrid thin-film to fabricate high efficient and low cost solar cells. This project will take three years to finish. This project includes two innovative directions, sandwiched structure hybrid thin film solar cells and novel innovative polymer-nanoparticle hybrid materials. These two directions integrates the expertise in organic/inorganic devices (Task I), interface engineering (Task II), packaging technique (Task III), novel hybrid materials for photovoltaics (Task IV), structure and morphology of novel hybrid materials (Task V), physical phenomena of photovoltaics (Task VI), Building-integrated photovoltaic (Task VII). The key issue is that these cells utilize inorganic materials as the two outer layers with the organic material between the two inorganic layers. This configuration protects the light absorbing organic layer in the middle and produces a far more stable organic layer in the thin film solar cell. Moreover, the inorganic layers with higher carrier mobility can also serve as electron/hole transport and blocking layers, which can efficiently suppress the leakage current and enhance the cell performance. More importantly, the inorganic layers can be developed in air from a solution-processed approach which has the advantages of low-cost and large-area applications. Via photoemission spectroscopies, the characteristics of organic solar cells could be investigated, including the changes of HOMO levels, work function, vacuum levels, and electronic structures as well as the phenomenon of carrier transport and induced interfacial chemical reactions at the interface. These can provide the information of carrier transport process at the interface between an electrode and an organic semiconductor. We will also focus on the development of low-temperature organic/inorganic hybrid encapsulation technology against oxygen and moisture permeation. Employing both theoretical modeling and experimental methodology, we will obtain bandgap matching polymer, nanoparticle, interface modifier and high light harvesting hybrid that can be fabricated into special designed solar cell. We will expect to have solar cell with a power conversion efficiency of 8~10%, price lower than US$50/m2 or US$1.0/W. We will demonstrate the feasibility of utilizing hybrid solar cell for building power supply.有機/無機混成三明治結構金屬氧化物光電子能譜介面反應低溫封裝水氧阻絕層混成形貌與結構建築整合型太陽光電Organic-inorganic hybridSandwiched structureMetal oxidesPhotoemission spectroscopyInterfacial chemical reactionLow-temperature encapsulationMoisture and oxygen barrierHybrid material morphology and structureBuilding-integrated photovoltaic有機無機混成薄膜太陽能電池