指導教授:林金福臺灣大學:高分子科學與工程學研究所林筱莉Lin, Hsiao-LiHsiao-LiLin2014-11-282018-06-292014-11-282018-06-292013http://ntur.lib.ntu.edu.tw//handle/246246/262679本論文主要是以聚苯胺、多層奈米碳管和石墨烯複合薄膜取代白金薄膜作為染料敏化太陽能電池對電極之催化層。首先,以苯胺硫酸鹽酸性溶液作為有效分散劑避免石墨烯與多層奈米碳管彼此堆疊與聚集。再分別利用定電位電化學聚合法與化學氧化/定電位電化學聚合法分別於FTO玻璃與載玻片表面形成複合薄膜。由四點探針與TGA分析結果,添加石墨烯與多層奈米碳管之複合薄膜表面電阻下降與熱重量損失下降量減少,證實利用定電位電化學聚合法與化學氧化/定電位電化學聚合法可成功地製備出PANi/Graphene/MWCNTs複合薄膜。 實驗第一部分:以定電位電化學聚合法於FTO玻璃表面形成PANi薄膜,其光電轉換效率為5.55±0.05 %。當添加石墨烯與多層奈米碳管適當的含量比例(苯胺/石墨烯=1/0.0045;苯胺/多層奈米碳管=1:0.0045)時,光電轉換效率分別提升至7.29±0.08% 與 7.21±0.08% .。以苯胺/石墨烯/多層奈米碳管的重量比例為1/0.0030/0.0045所製備出的PANi/Graphene/MWCNTs複合薄膜,達到最佳的光電轉換效率7.67±0.05%。此外,添加石墨烯與多層奈米碳管可使得短路電流由15.48 mA/cm2提升至18.21 mA/cm2。 實驗第二部分:以化學氧化/定電位電化學聚合法於載玻片表面形成PANi薄膜,其光電轉換效率為0.58±0.02%。當添加石墨烯與多層奈米碳管適當的含量比例(苯胺/石墨烯=1/0.0060;苯胺/多層奈米碳管=1:0.0060)時,光電轉換效率分別提升至2.04±0.08% 與 2.03±0.07%。以苯胺/石墨烯/多層奈米碳管的重量比例為1/0.0045/0.0060所製備出的PANi/Graphene/MWCNTs複合薄膜,達到最佳的光電轉換效率3.58±0.06% 。此外,添加石墨烯與多層奈米碳管可使得短路電流由3.64±0.06mA/cm2提升至9.38±0.07 mA/cm2. 由循環伏安法分析結果可得知,PANi/Graphene/MWCNTs複合薄膜相較於PANi、PANi/Graphene與PANi/MWCNTs而言,I3-於其表面還原成 I-之催化活性能力較佳,主要原因歸因於PANi/Graphene/MWCNTs複合薄導電性較佳而提升表面還原電流密度,使得短路電流、光電轉換效率與電量收集效率提升。另一方面,光電轉換分析中,以PANi/Graphene/MWCNTs複合薄膜當作對電極,其開路電壓值較大,主要與循環伏安法所測得的還原電位較高有關。This paper is mainly concerned with the replacement of platinum with polyaniline (PANi), graphene and multi-walled carbon nanotube (MWCNT) composite films used as a catalysis layer in counter electrode of dye-sensitized solar cells (DSSC). First, we used aniline sulfate solution as an efficient dispersing agent to debundle MWCNTs and to avoid graphenes aggregated. The composite films were grown on fluorine-doped tin oxide (FTO) and glass substrates by using electro-chemical deposition and chemical/electro-chemical deposition respectively. From the results of four-point probe and thermo-gravimetric analysis, the surface resistance and the weight loss percentage of the films were decreased with the addition of graphenes and MWCNTs. Accordingly, the PANi/Graphene/MWCNTs composite films were successfully fabricated by electro-chemical deposition and chemical/electro-chemical deposition. In the first part of this research, the PANi film were grown on the FTO-coated glass as counter electrodes of DSSCs by using electro-chemical deposition. The power conversion efficiency of as-fabricated DSSC was 5.55±0.05 % .When adding the proper amount of graphenes and MWCNTs (aniline/graphene=1/0.0045;aniline/MWCNTs=1/0.0045 ) , the power conversion efficiency were raised to 7.29±0.08% and 7.21±0.08% . The highest power conversion efficiency was 7.67±0.05%, when the weight ratio of aniline/graphene/MWCNT was 1/0.0030/0.0045. In addition , the addition of graphene and MWCNTs could enhance the Jsc of DSSC from 15.48 to 18.21 mA/cm2. In the second part of this research, the PANi film was grown on the glass slide as a counter electrode of DSSC by using chemical/electro-chemical deposition. The highest power conversion efficiency of as-fabricated DSSC was 0.58±0.02%. When adding the proper amount of graphenes and MWCNTs (aniline/graphene=1/0.0060;aniline/graphene=1/0.0060) , the power conversion efficiency were raised to 2.04±0.08% and 2.03±0.07%. The highest power conversion efficiency was 3.58±0.06%, when the weight ratio of aniline/graphene/MWCNTs was 1/0.0045/0.0060. In addition , the addition of graphene and MWCNTs could enhance the Jsc of DSSC from 3.64±0.06 to 9.38±0.07 mA/cm2. From the result of cyclic voltammetry (CV) analysis, the PANi/Graphene, PANi/MWCNTs, and PANi/Graphene/MWCNTs composite films compared to neat PANi have higher catalysis of converting tri-iodide (I3-) to iodide (I-) due to their higher conductivity and higher redox current density. The increase of redox current density resulted in higher Jsc, higher power conversion efficiency, and better charge collection efficiency of DSSCs. In addition, the open-circuit voltage of DSSCs was higher with the PANi/Graphene/MWCNTs counter electrode because of the higher reduction potential for I-/ I3- redox couples.第一章 緒論 1 1-1 前言 1 1-2 染料敏化太陽能電池的發展 3 1-3 染料敏化太陽能電池產業未來研發方向 4 1-4 文獻回顧與探討 4 1-4.1 染料敏化太陽能電池簡介與工作原理 4 1-4.1.1 染料敏化太陽能電池的工作原理 4 1-4.1.2 透明導電基板 7 1-4.1.3 染料 8 1-4.1.4 工作電極 10 1-4.1.5 電解質 14 1-4.1.6 對電極 16 1-4.2 染料敏化太陽能電池的量測技術與輸出特性 17 1-4.2.1 太陽光譜與光源模擬器 17 1-4.2.2 光電流-電壓特徵曲線 19 1-4.2.3 交流阻抗分析 22 1-4.2.4 IMPS與IMVS之量測 24 1-4.2.5電壓下降與電量收集法 26 1-4.3 導電高分子簡介 27 1-4.3.1 導電高分子種類及導電機制 28 1-4.3.2 導電高分子-聚苯胺 29 1-4.4 聚苯胺的合成 31 1-4.5 層層自组裝薄膜 33 1-4.6 奈米碳管簡介 35 1-4.7石墨烯簡介 36 1-4.7.1石墨烯的發現 36 1-4.6.2石墨烯的導電性質 38 1-5 研究目的 40 第二章 實驗設備與方法 42 2-1 藥品器材 42 2-2 儀器設備 43 2-3 染料敏化太陽能電池的製作 44 2-3.1 染料溶液的製備 44 2-3.2 液態電解質的製備 44 2-3.3 二氧化鈦鍍液的製備 45 2-3.4二氧化鈦工作電極的製備 45 2-3.5聚苯胺/石墨烯/多層奈米碳管複合薄膜對電極的製備 46 2-3.5.1 配製苯胺硫酸鹽溶液 46 2-3.5.2以化學氧化聚合法於載玻片表面形成聚苯胺薄膜 46 2-3.5.3添加不同重量比例之石墨烯與多層奈米碳管 46 2-3.5.4利用定電位電化學聚合法製備出複合薄膜對電極 47 2-3.6 元件組合 49 2-4 聚苯胺/石墨烯/奈米碳管複合薄膜的性質測試與試片製備 49 2-4.1 FT/IR分析苯胺硫酸鹽粉末化學鍵結 49 2-4.2 ATR-FTIR分析薄膜表面化學鍵結 49 2-4.3 複合薄膜每單位面積重量測試 49 2-4.4以四點探針量測複合薄膜表面之電阻 50 2-4.5 TGA量測試片熱重量損失 50 2-4.6 SEM觀測薄膜表面型態 50 2-4.7 循環伏安法分析薄膜催化活性 50 2-5 太陽能電池的光電化學測試 50 2-5.1 光電流-電壓特徵曲線 51 2-5.2 交流阻抗分析 51 2-5.3 IMVS與IMPS之量測 51 2-5.4 電壓衰退及電量分析實驗之量測 52 第三章 結果與討論 53 3-1 採用定電位電化學聚合法於導電玻璃表面形成複合薄膜 53 3-1.1 複合薄膜性質鑑定 53 3-1.1.1苯胺硫酸鹽粉末化學鍵結分析 53 3-1.1.2薄膜表面鍵結變化 53 3-1.1.3複合薄膜每單位面積重量隨定電位電量增加之變化 55 3-1.1.4複合薄膜表面電阻率隨定電位電量增加之變化 57 3-1.1.5試片熱重量損失變化 60 3-1.1.6 SEM觀測薄膜表面型態與EDX分析薄膜表面元素 65 3-1.2 複合薄膜對電極元件分析 69 3-1.2.1 光電轉換效率分析 69 3-1.2.2 交流阻抗分析 77 3-1.2.3 IMPS/IMVS分析 101 3-1.5.4 電壓衰退及電量累積分析 112 3-1.3複合薄膜催化活性分析 124 3-2採用化學氧化/定電位電化學聚合法於載玻片表面形成複合薄膜 133 3-2.1複合薄膜性質鑑定 133 3-2.1.1薄膜表面鍵結變化 133 3-2.1.2複合薄膜每單位面積重量隨定電位電量增加之變化 134 3-2.1.3複合薄膜表面電阻率隨定電量增加之變化 138 3.2.1.4試片熱重量損失變化 140 3-2.1.5 SEM觀測薄膜表面型態與EDX分析薄膜表面元素 145 3-2.2複合薄膜對電極元件分析 149 3-2.2.1 光電轉換效率分析 149 3-2.2.2 交流阻抗分析 157 3-2.2.3 IMPS/IMVS分析 181 3-2.2.4 電壓衰退及電量累積分析 192 3-2.3複合薄膜催化活性分析 204 第四章 結論 214 第五章 參考文獻 216 附錄 23012807404 bytesapplication/pdf論文公開時間:2016/11/05論文使用權限:同意有償授權(權利金給回饋學校)對電極聚苯胺石墨烯多層奈米碳管染料敏化太陽能電池利用聚苯胺/多層奈米碳管/石墨烯複合材料製作染料敏化太陽能電池對電極之製程及性能研究Processing and Performance of Polyaniline/Multi-walled Carbon Nanotubes / Graphene Composites as Counter Electrodes for Dye-sensitized Solar Cellsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/262679/1/ntu-102-R00549001-1.pdf