陳希立臺灣大學:機械工程學研究所陳宏鳴Chen, Hung-MingHung-MingChen2007-11-282018-06-282007-11-282018-06-282004http://ntur.lib.ntu.edu.tw//handle/246246/61526本研究將應用沸騰時高潛熱之熱傳概念,設計出一種新型的散熱裝置:熱虹吸蒸氣腔體(Thermosyphon Vapor Chamber),將其與風扇相搭配,成為一散熱模組。以實驗方式研究其對於加熱率、工作流體充填量及沸騰表面型式此三種變數下之散熱效果,並找出散熱能力最佳、穩定性最高之最佳化設計,同時建立起本實驗各部份之理論模式及半經驗公式,以冀帶給後人更進一步的研究方向。 實驗結果發現,熱虹吸蒸氣腔體之整體散熱性能主要取決於蒸發熱阻及冷凝熱阻。隨著加熱率增加,會使得蒸發熱阻降低、冷凝熱阻上升,但整體而言總熱阻仍下降。於充填量為12.9㏄及17.3㏄時系統可持續穩定操作;當充填量為8.6㏄時E1002及E1402表面出現溢流現象,使得散熱性能降低;充填量過高將使得系統散熱性能變差。E1002及E1402蝕刻沸騰表面有助於增強沸騰熱傳遞;E0602蝕刻沸騰表面由於間距過小,使得散熱性能變差。兩相封閉式熱虹吸蒸氣腔體散熱模組於沸騰表面為E1020、充填量17.3㏄時,散熱能力最佳,在加熱率為80W時,各項熱阻及總熱阻值最小(0.527℃╱W),較同充填量下光滑銅平板沸騰表面約低25%。The research applies the concept of high latten heat of boiling liquid to design a new type of heat removal device: “Thermosyphon Vapor Chamber, TSVC” and combine it with fans to make it a heat removal module. The system heat removal ability was studied under three different variables: (1)heating rate, (2)filling ratio of working fluid , and (3)types of boiling plate through the experiment method. Simultaneously, theory models and semi-experimental correlations of all parts of the system were established to bring further steps to researchers, too. The experimental results showed that the heat removal ability of TSVC was determined by evaporating resistance and condensing resistance. As the heating rate increased, evaporating resistance became lower and condensing resistance became higher, but the total resistance was lower in a whole. The system can be operated steadily while the filling ratio were 12.9㏄and17.3㏄. Flooding phenomenon was occurred in E1002 and E1402 etching plates while the filling ratio is 8.6㏄,its made the heat removal ability of system become lower, and the heat removal ability of system became lower while the filling ratio was too much, too. The boiling heat transfer rates was increased by the etching plates of E1002 and E1402. The heat removal ability of TSVC in this research was highest under E1002 etching plate and the filling ratio was 17.3㏄, all kinds of resistances and total resistance got a lowest value(0.527℃/W), which was 25%higher than smooth copper plate in the same conditions.目錄 中文摘要 I 英文摘要 II 目錄 III 表目錄 VI 圖目錄 VII 符號說明 X 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 4 1.3文獻回顧 5 第二章 理論模式與熱阻模型建立 10 2.1沸騰熱傳基本理論 10 2.1.1沸騰曲線圖 11 2.1.2核沸騰理論 12 2.1.3臨界熱通量 13 2.2冷凝熱傳基本理論 14 2.2.1Nussult分析 14 2.2.2對Nussult分析之改良 16 2.3溢流現象及其預測 18 2.3.1溢流現象 18 2.3.2溢流現象之預測 19 2.4熱阻模型之建立 19 2.4.1熱阻之定義 20 2.4.2熱阻分析模式 21 第三章 實驗設備及方法 23 3.1實驗系統簡介 23 3.2實驗參數 24 3.2.1工作流體充填量 24 3.2.2供應熱源加熱率 25 3.2.3沸騰表面型式 25 3.2.4小結 25 3.3實驗流程 26 3.4誤差分析 27 第四章 結果與討論 28 4.1各項熱阻之估計 28 4.1.1界面熱阻 28 4.1.2蒸發熱阻 30 4.1.3冷凝熱阻 32 4.1.4對流熱阻 35 4.1.5溢流現象之計算 37 4.2各參數對系統性能的影響 38 4.2.1加熱率對系統性能的影響 38 4.2.2充填量對系統性能的影響 42 4.2.3沸騰表面對蒸發熱阻的影響 46 4.3熱虹吸蒸氣腔體與迴路式熱虹吸蒸氣腔體之比較 48 4.3.1實驗結果描述 48 4.3.2結果討論 50 第五章 結論與建議 53 5.1結論 53 5.2建議 56 參考文獻 59 表總成 64 圖總成 77 附錄A設備表單 114 附錄B管-圓形板鰭片之鰭片效率計算公式 1152136576 bytesapplication/pdfen-US蒸氣腔體熱虹吸管平板型蒸發器Vapor ChamberThermosyphonPlate Evaporator熱虹吸蒸氣腔體之研究Investigation and Analysis of the Thermosyphon Vapor Chamberthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61526/1/ntu-93-R91522105-1.pdf