2004-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/690261摘要:藉由膠囊包覆的方式增加原生菌在製品及腸道中之殘存率,最近被廣泛的探討及研究,一些包覆方法及囊壁材料也被發展出來應用於發酵上及產品中,由於膠囊可以阻隔不良環境,降低細胞損失,因此對於提升原生菌殘存率有正面的效果。但是目前微膠囊包覆原生菌的研究範圍仍集中於微膠囊之耐酸性及腸溶性囊壁材質開發,對於耐熱及隔熱性則較少探討,然而加工的過程中,為了殺菌、溶解、提高製品品質等目的,加熱處理常是重要步驟之一。一般原生菌無法耐高溫,產品中若需應用原生菌,則有其限制。因此若是原生菌能利用耐熱性較佳並具耐酸性及腸溶性的材質包覆,則可大大增加原生菌應用性。 本計畫擬選用gellan gum、褐藻酸鹽及明膠等多種囊壁材質並添加益菌質,將原生菌微膠囊化,改善原生菌在80℃高溫的存活率。藉由Central Composite Design及序列二次規劃法(Sequencial Quadratic Programming) 尋找出隔熱性佳、具耐酸性及腸溶性之最佳微膠囊囊壁組合及生產條件,探討隔熱性微膠囊壁材質對原生菌活性和保存期間殘存率的影響,並模擬腸道環境,研究膠囊壁材質其抗酸及抗膽鹽性。最後將製成之隔熱性原生菌<br> Abstract: Encapsulation methods have been applied to increase the survival and delivery of probiotic cultures, and may enhance the shelf-life of probiotic cultures during heat treatments in dairy products. Heat treatments during food processing will hamper the application of probiotics. Encapsulations of probiotics with an insulating material may give the solution. However, the study of probiotic microencapsulation is focusing on the acid tolerance and gastrointestinal digestibility. Studying the heat tolerance of probiotic microencapsuls is few. This study will incorporate the insulating material to improve probiotic culture viabilities at high temperature. The objectives are to optimize the conditions for encapsulation of the probiotic bacteria, to investigate metabolic/acidifying activity of encapsulated bacteria, and to evaluate the survival of microencapsulated cultures under simulated gastrointestinal tract conditions. This study will develop a new coating material for microencapsulation of probiotics to protect the probiotics during heat treatments.微膠囊隔熱材質原生菌gellan gumMicroencapsultationinsulating materialprobioticsgellan gum藉由雙層包覆技術開發隔熱性原生菌微膠囊應用於葡萄糖酸內酯牛乳酸凝膠之研究