2014-04-012024-05-13https://scholars.lib.ntu.edu.tw/handle/123456789/654455摘要:本整合型研究計畫將進&#64008;開發高能量高功率之超級電容元件,藉由電極材料及電解 質系統的開發,有效提高電容器的能量、功率密度及循環壽命。本計畫採用之方式將有 (1)開發電極&#63756;米結構以提高電容值、設計電極複合材料以強化電子與離子傳導能&#63882;;(2) 採用有機系膠固態高分子電解質及離子液體以提高電容器的工作電位窗;(3)調控偽電容 材料含水量、晶相結構、分散度以改進循環充放電次&#63849;;(4)組裝成鋁塑複合軟包之超級 電容器之測試,藉以探討電容器之商業化或技轉之可&#64008;性。本計畫將與台灣中油公司及 工研院組成團隊,達到開發高能量超級電容並達產業化的目標。 根據E = CV2/2,提昇超級電容器的能量可透過提高電容與採用高電壓電解質方式。 根據上述原則,計畫總主持人鄧熙聖教授(子計畫一)將進行(1) 與台灣中油公司共同開 發瀝青原料之高效能階層孔&#64005;碳電極用於電雙層電容器,探討搭配&#63756;米碳材形成複合電 極之工程化之可&#64008;性。此外也探討酚醛樹酯和石墨烯等碳材之合成,其皆具極佳電容&#64008; 為。此複合電極將搭配高操作電位窗(>3.5 V)的離子液體或有機膠固態電解質,提高能 量及功率,突破目前國際上儲能效率及功率輸出的極限。(2) 膠固高分子電解質系統的 建&#63991;:以聚乙二醇及聚丙烯&#33096;分別具高離子傳遞及高鹽解離能&#63882;的特質,本計畫將合成 共聚高分子,製備膠態或固態電解質&#63789;搭配高效能電極材料,製成高功率、高儲電量及 長循環壽命的膠態或乾式電容器。此研發之膠固高分子電解質將有助於工業級捲對捲電 容器組裝程序的建&#63991;,有助電容器的產品化。(3) 本計畫將運用離子液體的高電位窗、 低黏度等特性,並選擇在結構上容易進入電極材料孔隙以儲存電荷的陰陽離子結構(彎 曲型如TFSI或DCA,線型如SCN),&#63789;設計任務型離子液體做為超級電容器的電解液。(4) 本研究團隊將搭配輕型的鋁塑複合軟包封裝超級電容器,且進&#64008;後續的理論分析。 共同主持人胡啟章教授(子計畫二)將開發兩大主題。(1) 首先在水相電解質系統 下,針對過渡金屬氧化物(MFe2O4, (Ni-Co)(OH)2, NiCo2O4, FeOx)與碳材料表面之氧化還 原可逆性進&#64008;控制,並了解表面電化學活性物種之氧化還原與其微結構的相對關係;並 將過渡金屬氧化物與碳材料組裝成非對稱型超級電容器元件,了解其隨著不同充放電速 度操作時,面臨兩極電荷差異程度對超級電容器元件的電容表現之影響。(2) 在有機相 系統中,先透過電化學分析,了解材料於元件中之電化學表徵對長效循環壽命之相應關 係。亦將針對碳材有機相電解質對稱型超級電容器,進&#64008;元件(full cell)雙極式的電化學 電容分析,並嘗試將三極式的電化學電容分析&#63849;據建&#63991;出有機相環境中對稱型超級電容 器最高可使用工作電壓的準則。最後著手合成並了解含鋰金屬氧化物與鈉鈦氧化物作為 有機非對稱型超級電容器之負極的特性;在正極方面則著重於不同型態的碳材並詳細探 究,在有機電解質中陰離子的嵌入遷出對工作電位提昇的影響。 共同主持人吳乃立教授(子計畫三)將在傳統有機電解液活性碳超級電容電極中,添 加鋰離子電極材料奈米氧化物粒子,有效提升電極之電容量密度。在負極方面採取添加 高容量轉換型奈米氧化物MnMOx,其中M為第二過渡金屬元素,正極採取Li-Fe-Ti-PO4 磷酸鹽複合粉體,研究重點在於設計與合成最適成分,匹配電容及電池材料電化學特 性。研究工作內容包括:新型高電容密度C/ MnMOx複合負極的合成與性質分析;新型 高電容密度C/Li-Fe-Ti-PO4複合正極的合成與性質分析;C/MnMOxC/Li-Fe-Ti-PO4全電池 的組裝與測試。 主持人鄧熙聖教授將整合製作技術工作包括:a)高效能碳電極可與台大吳乃&#63991;教授 之正負極複合電極材料及清大胡啟章教授之金屬氧化物電極材料搭配,進&#64008;非對稱超級 電容器的技術開發。b)建構鋁塑複合軟包封裝電容器平台,搭配膠態、固態高分子電解 質及各式金屬氧化物電極材料,擴展超級電容器的實用性,並將技術移轉至台灣中油公 司、中碳或其他業界。<br> Abstract: This project develops and integrates the key technologies of supercapacitor devices to achieve high energy and power densities. The key technologies for high-performance supercapacitors include (1) synthesis of nanostructured electrode materials, (2) design gel, solid-state, and ionic liquid electrolytes for high voltage operation, (3) tune the structure of psuedocapacitive materials for asymmetric supercapacitors, and (4) fabricate pouch cells in an industrial scale for commercialization. This project will have collaboration with CPC Corporation and Industrial Technology & Research Institute to commercialize the products. According to energy equation E = CV2/2, increasing capacitance (C) and operation voltage (V)of the devices by using high-capacity electrode materials and high-voltage electrolytes (gel and solid-state electrolytes or ionic liquids) is the primary principle for promoting the energy capacity of supercapacitors. Based on the above understanding, subproject 1 (Prof. Hsisheng Teng, NCKU; PI) focuses on the following topics: (1) activation of pitch products from CPC Corporation and China Steel Chemical Corporation, phenol-formaldehyde resins, and graphene to produce high porosity carbons with hierarchical structure for efficient charge storage; (2) synthesis of polymer gel and solid-state electrolytes used for roll-to-roll supercapacitor assembly scalable to industrial levels; (3) synthesis of ionic liquids with high operation voltages and low viscosity; (4) assembly of pouch-cell supercapacitors suitable for tests in the industrial level. Subproject 2 (Prof. Chi-Chang Hu, NTHU; co-PI) focuses on two main topics. First, in aqueous electrolytes, this group tries to understand the redox reversibility of active materials of asymmetric supercapacitors. Nanostructured transition metal oxides, including MFe2O4, (Ni-Co)(OH)2, NiCo2O4, FeOx, with different degrees of redox reversibility will be employed for cell assembly. Discharging of asymmetric supercapacitors consisting of oxide cathode and activated carbon anode is used to figure out the charge balance issue. Second, in organic electrolytes, the electrochemical characteristics and impedance responses will be investigated and correlated. Activated carbon-based EDLCs will be tested to provide useful information for constructing the organic asymmetric supercapacitors. Organic asymmetric supercapacitors consisting of negative electrodes of Li-ion based oxide nanoparticles and NaxTiO2 nanotubes and positive electrode of carbons with anion intercalation will be developed for achieving the maximal cell voltage and highest specific energy/power. In subproject 3 (Nae-Lih Wu, NTU; co-PI), Li-ion battery electrode materials having high-capacities will be introduced to make composite electrodes to effecitvely increase the specific capacity and capacity density of EDLC active carbon electrode. The negative electrode will adopt MnMOx conversion anode materials, while the positive electrode Li-Fe-Ti-PO4 cathode materials. The research focus will be placed at finding suitable mixture/doping compositions for these added materials in order to the match their potential-capacity relation close to those of the active carbon electrodes. Research works include: synthesis and characterization of C/MnMOx electrodes, synthesis and characterization of C/Li-Fe-Ti-PO4 electrodes, construction and testing of C/MnMOxC/Li-Fe-Ti-PO4 full-cell. The principal investigator (Prof. Teng) will integrate the materials developed by the subprojects using the pouch cell system developed in subproject 1. The ultimate goal of this project is to transfer the intelligence properties of Supercapacitor Production to CPC Corporation, China Steel Chemical Corporation, or other related companies through Industrial Technology & Research Institute. This project aims to substantially advance the scientific and technical levels of Taiwan’s energy-storage industry.超級電容器膠固態電解質離子液體非對稱型超電容器電池型電極材料supercapacitorsgel and solid electrolytesionic liquidasymmetric supercapacitor高能量高功率超級電容元件之開發與組裝(1/3)