2010-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/693436摘要:本計劃的主要目標在於建構一方法,以便在沒有實驗數據的情況下,仍能夠精準且 有效的預測流體的熱力學性質以及相行為。此目標之達成對於化學藥品排放至環境的 影響、新藥物的開發、以及新的化工程序設計等許多重要工作,都能降低其所需的時 間與費用。 在此三年的計畫裡,我們首先將建立溶合理論與熱力學理論之間完整的關係。雖然 溶合自由能與相平衡計算所需的化學勢能息息相關,但由於溶合本身的概念非常抽 象,且大多數的化學工程師對溶合理論相當陌生,因此透過計算溶合自由能來預測相 行為尚未被廣泛的利用。此關係的建立有助於確保其他研究的進行,並避免錯誤的發 生。 其次,我們將利用量子溶合計算的結果,估算現有熱力學模型(如狀態方程式)中之 參數,並進行相行為預測。在過去的文獻中,也有許多透過直接計算分子間作用力的 方法來估算模型參數的方法被提出來。然而這些方法往往只適用在特定的系統或特定 的熱力學模型。我們提出的方法,是將計算所的之溶合自由能做為求取模型參數所須 的邊界條件,因此可避免其他方法所遭遇之困難,能夠適用於大部份的熱力學模型, 並且對於不同的系統都得到一致的準確度。 此外,我們將依據泛凡得瓦理論,開發新一代的熱力學模型,僅需要輸入量子溶合 計算的結果,即可進行所有熱力學性質的計算。在泛凡得瓦理論中,分子周圍成份隨 著溫度、壓力與系統整體組成的變化關係,是推導既有熱力學模型的最重要關鍵。隨 著溶合理論與計算的進步,這類訊息已可直接透過溶合計算而得,藉此我們也可以建 立新一代,不含任何經驗參數的熱力學模型。我們將透過計算不同種類純物質、他們 的混合物(包括電解質溶液)的熱力學性質與相行為,來驗證我們的方法。<br> Abstract: The goal of this proposal is to development a robust and accurate method for the prediction of thermophysical properties and phase equilibria without the need of experimental input. This helps reduce the time and cost in estimating the environmental impact of new synthetic chemicals when released to the nature, in drug discovery, as well as in the design of new chemical processes. In this three-year project, we will first establish the necessary connections between theories of solvation and chemical engineering thermodynamics. While the solvation free energy is closely related to the chemical potential, its use in phase equilibrium calculations has been retarded because the concept of solvation is quite abstract and the relevant theories are unfamiliar to most chemical engineers. Nonetheless, recent advances in both accuracy and efficiency in quantum mechanical solvation calculations have made it possible to obtain thermodynamic properties a priori. The first work also serves as a foundation for obtaining the model parameters in existing thermodynamic models from the results of first principle solvation calculations. Most previous efforts by others determine the interaction parameters in existing models by direct calculation of intermolecular interactions from molecular pairs or clusters; however, the degree of success varies depending on the type of system under consideration and the model being used. Our approach circumvents these problems by treating the calculated solvation free energy as a boundary condition for obtaining model parameters and is, therefore, applicable for all thermodynamic models and could provide a uniform accuracy across a wide variety of systems. In addition, a new generation EOS that requires input of only results of solvation calculation will be developed based on the generalized van derWaals theory. In GVDW theory, the variation of local composition with temperature, density, and composition is the most important information for development any EOS. In light of the advances in solvation theory, such information can now be obtained from solvation calculations. This helps in the development of the new generation EOS.We will validate and demonstrate the new method for pure and mixture fluids, including electrolyte solutions.以嚴謹活性係數模型預測液相熱力學性質