張宏鈞Chang, Hung-Chun臺灣大學:光電工程學研究所王宸宇Wang, Chen-YuChen-YuWang2010-07-012018-07-052010-07-012018-07-052009U0001-1908200915473500http://ntur.lib.ntu.edu.tw//handle/246246/188483摘要篇論文採用二維有限時域差分法來研究奈米電漿子圓柱間的耦合現及一維的電漿子波導。我們使用Drude 色散模型模擬金屬,並使用有色散的單軸異向性完美匹配層作為相對應的計算空間吸收邊界。先,在色散材料的曲面模型中,我們比較了index-average scheme 和onformal scheme 之間的差異。接著我們使用conformal scheme 來分析amp;#63756;米電漿子圓柱的散射截面積。近場強度和一維圓柱陣列的散射截面之間的關係也會在此做一些討論。此外,我們分別針對下列幾種不條件來計算散射截面積和近場強度: 1、不同的圓柱半徑 2、不同圓間的距離 3、不同的入射波方向。最後,我們將有限時域差分法計出來的圓柱陣列結構色散關係圖與有限元素法得到的結果做比較;一方面,我們改變薄膜陣列的厚度並觀察色散關係和磁場分佈情形變化。Abstractn this research, a two-dimensional (2-D) finite-difference time-domain (FDTD)nalysis method is applied to study the coupling between nano-plasmonic cylindersnd mode characteristics 1-D nano-plasmonic waveguides. The Drude model foretallic material dispersion is implemented into the FDTD algorithm along withhe dispersive uniaxial perfectly matched layer (UPML) as the absorbing boundaryondition for the computational domain. For the modeling of the curved surfaces forhe dispersive materials, we first compare the index-average scheme with the conformal scheme. We then apply the conformal scheme to analyze the total scatteringross section (TSCS) of the nano-plasmonic cylinders. The relation between theear field intensity and the TSCS of 1-D cylinder arrays are discussed. We calculatehe TSCS and the near field intensity by changing the size of the cylinder radius,he distance between the neighboring cylinders, and the direction of the incidenceave. Rather than applying frequency-domain methods, we try to use the FDTDethod to analyze the guiding conditions for 1-D nano-plasmonic cylinder and filmrrays. For the cylinder arrays, we compare the results calculated by the FDTDethod with those by the finite-element method (FEM) in our group. For the filmrrays, we vary the thickness of the films and observe the change of the dispersionurves and magnetic field distributions of each guided mode.Contents Introduction 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 The Finite-Difference Time-Domain Method 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Uniaxial Perfectly Matched Layer Absorbing-Boundary Conditions . . 6.3 Schemes for Curved Interface Treatment . . . . . . . . . . . . . . . . 11.3.1 The Index-Average Scheme . . . . . . . . . . . . . . . . . . . 12.3.2 The Conformal Scheme . . . . . . . . . . . . . . . . . . . . . . 14 Modeling of Curved Surface for Dispersive Materials with FDTDattice 22.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2 Comparison of the Index-Average Scheme and the Conformal Scheme 23.2.1 Near Field Scattered by a Single Nano-Plasmonic Cylinder . . 23.3 Modeling of Silver Nano-Cylinder Coupling . . . . . . . . . . . . . . . 25.3.1 Modeling of Scattering Cross Section . . . . . . . . . . . . . . 25.3.2 Cross Section for a Single Nano-Plasmonic Cylinder . . . . . . 26.3.3 Linear Arrays of Ag Nano-Cylinders . . . . . . . . . . . . . . 27 Modeling of One-Dimensional Nano-Plasmonic Waveguides 54.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.2 Modeling of Guided Modes in Nano-Plasmonic Cylinder Waveguides . 55.2.1 Some Remarks for Simulation . . . . . . . . . . . . . . . . . . 56.2.2 A Single Row Array of Nano-Plasmonic Cylinders . . . . . . . 57.2.3 Nano-Plasmonic Cylinders with Finite Number of Periods . . 58.3 Guided Modes Supported by Plasmonic Films with a Periodic Ar-angement of Subwavelength Slits . . . . . . . . . . . . . . . . . . . . 59.3.1 Dispersion Relations for Different Thicknesses of the Nano-lasmonic Films . . . . . . . . . . . . . . . . . . . . . . . . . 59.3.2 Nano-Plasmonic Films with Finite Number of Periods . . . . . 62 Conclusion 903937514 bytesapplication/pdfen-US王宸宇有限差分時域法奈米電漿子Cy WangFDTDNano-Plasmonic以有限差分時域法分析二維奈米電漿子結構之光散射與導波問題Finite-Difference Time-Domain Analysis of Light Scattering and Guiding in Two-Dimensional Nano-Plasmonic Structuresthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/188483/1/ntu-98-R96941087-1.pdf