指導教授:林浩雄臺灣大學:電子工程學研究所何浩一Ho, Hao-IHao-IHo2014-11-302018-07-102014-11-302018-07-102014http://ntur.lib.ntu.edu.tw//handle/246246/263943本論文研究以有機金屬化學汽相沉積法將磷化銦鎵成長在鍺基板上,其受到鍺基板自摻雜與外擴散造成磊晶層內鍺原子濃度的不均勻,對於磷化銦鎵有序排列結構的影響。 我們以光激發螢光頻譜和二次離子質譜分析在不同深度下,樣品有序排列程度與鍺原子濃度的變化。由於鍺的自摻雜效應並不會在磊晶過程中影響表面排列(surface reconstruction),因此在edge樣品中,上層與中層鍺原子自摻雜濃度相同但是上層為有序排列程度較高,而中層為有序排列程度低。而鍺原子是在受熱擴散後破壞原有的有序排列結構,其過程與濃度和受熱時間相關,因此在center樣品中鍺原子濃度較低,所以有序排列程度比edge樣品還高;而edge樣品上層雖然鍺原子濃度高,但受熱時間還來不及使其擴散破壞有序排列,因此其有序排列程度與center樣品相同。我們並以快速熱退火加熱edge樣品來驗證我們的假設。 最後我們藉由樣品不同方向的極化放光得知在center樣品為只有CuPtB1的有序排列,而在edge樣品中存在有兩種排列程度的磷化銦鎵,其高能量訊號為無序排列的磷化銦鎵放光,低能量訊號為同時有CuPtB1和CuPtB2有序排列的磷化銦鎵放光。This thesis investigates the InGaP ordering affected by the difference in Ge concentration in epilayer caused by autodoping and outdiffusion. We use photoluminescence and secondary ion mass spectroscopy to analyze the orderness and Ge concentration under different depth. Owing to the Ge autodoping won’t affect the surface reconstruction during the growth, in the edge sample, although the top layer and the middle layer have the same autodoping concentration, the middle layer has lower ordering. Ge will destroy the ordering structure by diffusion, and is related to Ge concentration and heating time. Because of the difference in Ge concentration, the ordering in the center sample is higher than that in the edge sample. And although the Ge concentration in the top layer of edge sample is high, the heating time isn’t enough for diffusion to destroy the ordering structure, so it keep the same ordering with center sample. This can be confirm in RTA treatment, after 600℃ annealing for 30 seconds, the ordering structure in the top layer of edge sample will no longer exists. Finally, we use different direction scattering of polarized PL to know that there is only CuPtB1 ordering structure in the center sample. And there are two degree of ordering in the edge sample, the disorder structure in the bottom layer and with CuPtB1 and CuPtB2 ordering in the top layer.目錄 中文摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第一章 序論 1 1.1 串疊型太陽能電池 1 1.2 Cu-Pt有序排列 1 1.3 磷化銦鎵成長在鍺基板 3 1.4 論文內容概述 3 第二章 實驗架構與量測方法 7 2.1 樣品的準備 7 2.2 微區光激發螢光量測系統(Micro-PL system) 7 2.2.1 量測系統之架構 7 2.2.2 量測極化狀態符號介紹 7 2.2.3 改變量測極化狀態 8 2.2.4 系統極化校正 8 2.3 光激發螢光量測 9 2.3.1 光激發螢光原理 9 2.3.2 極化光激發螢光量測 9 第三章 光激發螢光量測分析 15 3.1 室溫光激發螢光量測 15 3.2 X光繞射頻譜分析(X-Ray Diffraction, XRD) 15 3.2.1 XRD量測 15 3.2.2 晶格不匹配與受應變後能隙計算 16 3.3 鍺基板擴散破壞磷化銦鎵有序排列 18 3.3.1 磷化銦鎵上層有序下層無序排列 18 3.3.2 二次離子質譜儀分析(secondary ion mass spectroscopy) 19 3.4 快速熱退火(Rapid Thermal Annealing)影響 20 第四章 極化光激發螢光量測 29 4.1 有序排列與量測方式介紹 29 4.2 正向螢光極化光激發量測 30 4.3 側向螢光極化光激發量測 31 第五章 結論 43 參考文獻 452655332 bytesapplication/pdf論文公開時間:2020/02/23論文使用權限:同意有償授權(權利金給回饋本人)磷化銦鎵鍺價帶分裂有序排列自摻雜外擴散鍺的自摻雜效應和外擴散效應對磷化銦鎵有序排列結構影響The effect of Ge autodoping and outdiffusion on InGaP orderingthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/263943/1/ntu-103-R01943056-1.pdf