李世光臺灣大學:應用力學研究所吳爵宇Wu, Chueh-YuChueh-YuWu2007-11-292018-06-292007-11-292018-06-292007http://ntur.lib.ntu.edu.tw//handle/246246/62547質量吸附造成頻率下降為石英振盪微天平在生物應用上的一般概念,但尿素解構作用和殺鼠靈的鍵結反應在頻率反應上得異常現象已經無法用一般概念解釋,在將質量和黏彈性質改變造成的影響去除後,此類現象將被歸類為界面現象之影響。論文中嘗試以多變數來偵測和分析此現象的影響程度,而方法便是建立一多諧振探測之石英振盪微天平,而實驗結果顯示尿素人類血清白蛋白的解構使得單純由表面親疏液體性質變化對石英振盪微天平的影響被觀察到。 於是整合系統之多諧振探測之石英振盪微天平提供了多參數量測,這使得一般帶有質量、黏彈性質、表面性質變化的生物反應可以被描述和分析,同時,自行組裝的系統具有研究進階表面現象的潛能,成為未來藥物開發的有利工具。Traditional prediction about frequency reduction of Quartz Crystal Microbalance (QCM) after materials bonding was challenged by the phenomenon of warfarin binding and denature by urea. The response was classified as the interfacial effect after eliminating the mass and the viscoelasticity effects. Multi-parameter detection that includes the mass, the viscoelastic effect, etc. was detected and analyzed by using high-overtone Quartz Crystal Microbalance (HQCM) in this thesis. Furthermore, QCM was for the first time to make the observation of the pure transition of hydrophilic to hydrophobic property possible during the case of urea unfolding. HQCM was fabricated and integrated into a complete system that enables multiple parameters measurement. The general biological interaction inducing mass, viscoelastic, interfacial effect will be more apparently described and analyzed on the platform of HQCM. At the same time, the lab-built system provides much freedom, having potential to develop advanced study of interface science. The whole system can potentially find application in drug discovery.Abstract i 摘要 ii 謝誌 iii Table of Contents iv List of Figures vi List of Tables ix Symbols x Chapter 1 Introduction 1 1-1 Biosensor 1 1-2 History of QCM (Quartz Crystal Microbalance) 4 1-3 Motivation 6 1-4 Thesis organization 8 Chapter 2 Theory 9 2-1 Material Properties of Quartz Crystal 9 2-1-1 Crystal Properties and Piezoelectric Effect 9 2-1-2 AT-cut Quartz 11 2-1-3 Distribution of Vibrating Amplitude 12 2-1-4 Mode of Vibration 14 2-2 Basic Relationship between Mass and Frequency of Oscillator 15 2-3 Acoustic Impedance and Bulk Acoustic Oscillation 15 2-3-1 Acoustic Impedance 15 2-3-2 Bulk Acoustic Oscillation 17 2-4 Behavioral Model of Quartz Crystal 20 2-4-1 Transmission Line Model 21 2-4-2 Butterworth-Van Dyke Equivalent Circuit 23 2-4-3 Impedance and Admittance Spectrum 26 2-4-4 Interfacial and Non-gravimetric response 31 2-5 Surface Energy 33 Chapter 3 Experimental Method Comparison 35 3-1 Interface Circuit 35 3-1-1 Oscillation Circuit 35 3-1-2 Impedance Measurement 38 3-1-3 Method Selection 43 3-2 Contact Angle Measurement 45 Chapter 4 Experimental Setup &Process 46 4-1 Experimental Setup 46 4-1-1 Software part 46 4-1-2 Mechanical part 48 4-1-3 Biological part 51 4-2 Experimental Process 60 4-2-1 Urea unfolding 61 4-2-2 Warfarin binding 61 Chapter 5 Experimental Results 63 5-1 Urea unfolding 63 5-1-1 Blank experiment 63 5-1-2 Unfolding Process 65 5-2 Warfarin Binding 69 Chapter 6 Discussion 74 6-1 Possibility 74 6-1-1 Viscoelasticity 76 6-1-2 Interface Type 79 6-1-3 relationship 82 6-2 Summary 84 6-3 Future Work 86 Reference 872098440 bytesapplication/pdfen-US生醫檢測石英阻抗分析血清白蛋白尿素蛋白質解構biosensorquartzimpedance analysishuman serum albuminureaproteinunfoldingdenature連接子及界面條件對石英振盪微天平在水浴量測之研究Study of Linker & Interfacial Effect on the Quartz Crystal Microbalance in Aqueous Conditionthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62547/1/ntu-96-R94543029-1.pdf