張斐章臺灣大學:生物環境系統工程學研究所張凱堯Chang, Kai-YaoKai-YaoChang2010-05-052018-06-292010-05-052018-06-292009U0001-1301200915150900http://ntur.lib.ntu.edu.tw//handle/246246/181141雨水下水道系統為都市安全輸送暴雨逕流,減輕都市淹水風險的重要設施,然而都市化造成的高度開發,使降雨集水時間縮短,急遽暴雨在短時間內產生大量地表逕流無法及時排除,導致局部地區發生積水情形;而市區排水系統配合都市開發而逐漸地下化,使下水道系統水理狀況不易掌握,更增加都市防洪排水管理的困難度。本研究目的在透過人工智慧相關技術,模擬人類學習、適應、回想等能力,以解決都市排水複雜的非線性與時變性系統問題,建構市區雨水下水道水位預測模式及防洪抽水站即時操作指引模式,提供管理者進行都市防洪排水整體操控策略規劃之參考。本研究首先探討倒傳遞類神經網路(BPNN)於雨水下水道水位預測模式之應用,經測試不同時距輸入資料格式之多階段水位預測模式,成功建立預測準確性極高之雨水下水道水位預測模式,並探討得知短時距輸入資料格式建立之水位預測模式比長時距資料格式更能掌握未來時刻雨水下水道水位變化,此水位預測模式除為都市積水預警提供更寬裕的應變時間外,亦提供防洪抽水站操作對掌握未來時刻水位變化之需求。其次探討反傳遞模糊類神經網路(CFNN)及調適性模糊類神經網路(ANFIS)於都市防洪抽水站即時操作指引模式之應用,研究結果顯示,透過降雨量、前池水位變化、閘門啟閉及抽水機組操作等輸入資料,CFNN及ANIFS即能建置準確性極高的抽水操作指引模式;而ANFIS因具備高度學習能力,利用少數規則即可預測較CFNN更精確的未來時刻抽水機組操作需求,因此應用ANFIS建構之防洪抽水站即時操作指引模式,將可提供抽水站管理人員即時操作建議,提昇抽水站操作效率及安全性。Drainage systems play an important role in transporting storm runoff and reducing flood risk in urban areas. Stormy water, discharged by underground drainage systems, is hard to control, especially in highly urbanized areas, where concentration time is shorten and runoff coefficients are increased. This study aims to construct water-level prediction models in urban drainage systems and real-time operational guidelines for flood control pumping stations by using artificial intelligent techniques (AI). The AI techniques could effectively solve highly non-linear control problems and robustly tune the complicated conversion of human intelligence to logical operating system.his study first applies back-propagation neural networks (BPNN) to predict water-level in the urban drainage systems of Taipei city. The results show that BPNN could satisfyingly predict the water level with high accuracy. The model provides much longer responding time for urban flood management. The application also indicates that input data with shorter time interval has higher accuracy, which meets the need of pumping operation.he real-time operation guidelines for pumping stations in urban areas are future investigated by using counterpropagation fuzzy-neural network (CFNN) and adaptive network-based fuzzy inference system (ANFIS). The results demonstrate that CFNN and ANFIS are both capable of forming reliable guidelines by using the information of precipitations, fore-bay water levels, gate operation and number of pumping station. It also indicates that ANFIS, comparing to CFNN, has better learning algorithm, which requires less rules to meet accuracy pumping operation needs. The real-time operation guidelines formed by ANFIS are recommended to managers for promoting operation efficiency and reliability.摘 要 Ibstract II 錄 III目錄 VI目錄 IX一章 緒論 1-1研究緣起 1-2 都市排水特性 2-3研究目的 4-4 研究架構 6二章 文獻回顧 10-1 都市防洪排水系統研究 10-1.1都市雨水下水道系統 10-1.2防洪抽水站操作 12-2模糊理論 13-3模糊推論系統 14-4類神經網路 15-4.1倒傳遞類神經網路 16-4.2調適性網路模糊推論系統 17-4.3反傳遞模糊類神經網路 18三章 人工智慧理論概述 19-1 模糊理論 20-1.1模糊推論系統 25-2 類神經網路 27-2.1倒傳遞類神經網路 31-2.3反傳遞模糊類神經網路 41-2.3調適性網路模糊推論系統 46四章 智慧型都市雨水下水道水位預測模式 55-1 研究區域概述 56-1.1 抽水站現況說明 56-1.2 水文資料蒐集與分析 59-2 網路架構選取 61-3 評估指標 63-4 CGBP雨水下水道水位預測模式 65-4.1水位預測模式 65-4.2 5分鐘預測結果 67-4.3 10分鐘預測結果 69-4.4 20分鐘預測結果 73-4.5 30分鐘預測結果 77五章 智慧型防洪抽水站操作指引模式 82-1抽水站現行操作評析 83-1.1 抽水站操作說明 83-1.2 影響操作因子評析 86-2 CFNN防洪抽水站操作指引模式 87-2.1 網路架構 87-2.2 參數設定及模式評析 89-3 ANFIS防洪抽水站操作指引模式 95-3.1 網路架構及參數設定 95-3.2模式評析 102六章 結論與建議 105-1 結論 106-1.1雨水下水道水位預測模式 106-1.2防洪抽水站即時操作指引模式 107-2建議 108考文獻 110application/pdf2034243 bytesapplication/pdfen-US水位預測抽水站操作倒傳遞類神經網路(BPNN)反傳遞類神經網路(CFNN)調適性模糊類神經網路(ANFIS)Water-level predictionPumping operationBack-propagation neural networks(BPNN)Counterpropatagation fuzzy neural network(CFNN)Adaptive network-based fuzzy inference system(ANFIS)人工智慧於都市防洪排水系統控制之研究Artificial Intelligence for City Flood Control Systemthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/181141/1/ntu-98-D92622002-1.pdf