周必泰臺灣大學:化學研究所王康為Wang, Kang-WeiKang-WeiWang2010-06-302018-07-102010-06-302018-07-102009U0001-0707200916571600http://ntur.lib.ntu.edu.tw//handle/246246/187526在這本論文中,主要分為五個章節,第一個章節中,概述基本的光物理光譜的性質以及後面章節中數據的計算方式;第二章中,主要簡介「有機發光二極體」的背景歷史、衍生至今的發展過程與放光原理的概述,並就這兩年的實驗數據整理並討論對於第三列過度金屬之量子產率(quantum yield)、生命期(lifetime)的調控。 第三章中,透過研究單體(monomer)與雙體(dimer)之鉑金屬的有機金屬化合物來研究「金屬-金屬至螯合基價轉移」(metal-metal-to-ligand charge transfer)機制,在此章節中,透過理論計算的幫助,成功地與實驗結果相符合。 第四章中,透過研究研究2-吡啶吡唑族配基 (2-pyridyl pyrazole Family Ligands)為放光團,並搭配Benzyl Diphenylphosphine 作為輔助基來穩定分子的非放光速率常數 (non-radiative constant) ,在此段研究中,我們利用拉曼光譜(Raman spectra) 與理論計算以及X光解晶來應証輔助基對於Ir-H 的建長的影響,並利用trans effect 來說明此實驗結果。 最後一章是利用鉑金屬為中心,搭配長碳鏈的集團用以增加分子間的凡德瓦力,使分子與分子間有良好的堆疊,形成液晶排列性質,並透過溶液相, 固相, 與 Host/Guest 組合,使鉑金屬化合物產生不同程度的堆疊,並透過光致激發的方式,來證明不同組合中,堆疊程度的差異。In this thesis, I would divide into 5 chapters. In the 1st chapter, photophysic and photochemistry will be introduced. In addition, several calculation methods, which are used in the following chapters, such a Q.Y., lifetime, kr, and knr…etc, would be listed. In chapter 2, in the beginning, I would summarize the OLED history, progress, and recent development. The rest of this chapter would focus on the transition of OLED emitter material, such as LLCT (ligand-to-ligand charge transfer), MLCT (metal-to ligand charge transfer)…etc, and the methodology of tuning the Quantum Yield (Q.Y.), lifetime, kr, and knr by using different substituent, ligand, trans effect, and ancillary ligand. In chapter 3, by comparing the Mono- versus Di- nuclear PtII 6-(5-Trifluoromethyl-Pyrazol-3-yl)-2,2’-Bipyridine, I would further discuss about the metal-metal –to-ligand charge transfer (MMLCT) transition which happens in the di-nuclear PtII complex. This transition is tuned by modify the intramolecular Pt- Pt distance, and the results are well-correlated to the X-ray analysis and theoretical computation. In chapter 4, Ir metal complex with special Ir-H bond will be discussed. We can use the Raman spectra, X-ray analysis, and theoretical computation to prove the Trans effect does happen. So we can take the advantage of Tran’s effect to enhance to Trans position Ir-ligand bond in order to increase/decrease the MLCT % and the ligand field strength. The final chapter, by using 2-pyridyl pyrazole Family Ligands as chromophore, long carbon chain, Pt metal complex with liquid crystal property is discovered. The emission peak maximum is around 510 (nm). Furthermore, by comparing the different kr in solution, neat films, and Host/Guest system, the degree of aggregation are understood. In this case, the Pt-Pt interaction can be enhanced by the lager ππ stacking and increase of Van Der Waal force.List of contents pagehapter 1 Introduction of photophysic.....................1.1 Photophysic..…………………………………………………….1.2 excited state relaxation pathway……………………………2.2.1 Radiative transitions……………………………… ………2.2.2 Nonradiative deactivation of excited states……… …4.3 Photochemical process -energy transfer…………… …… 5.4 Experimental Section……………………………………………7.4.1 General experiment Details…………………………………7.4.2 Steady-State Spectroscopy……………… …………………8 1. Absorption of UV-visible Light…………………………8 2. Emission Spectra………………………………… ………13 3. Excitation Spectra…………………………………………19 4. Time-Correlated Single Photon Counting………………20.5 Reference…………… …………………………………………28hapter 2 Introduction of phosphorescence OLED.…………..30.1 OLEDs history, progress, and recent development…… 30.2 Basic Properties of organic Light-emitting Diodes …35.3 Electronic excitaions and excited states..................................36 .3.1 Ligand-centered (LC) transitions or intraligand(IL) π* excited state…………………………………………………..37.3.2 Metal-centered transitions and states…………………37.3.3 Metal-ligand-charge transfer…… ……………………..40.3.4 Metal-metal-to-ligand charge transfer…………………41.3.5 Ligand-to-metal charge-transfer (LMCT) excited state……………....................................43.4 Tuning of the excited state properties of OsII, IrIII, and PtII complexes……......................…43.4.1 Strategies to enhance the Quantum Yield or lifetime43.4.1-1 Using electron donating /withdrawing substituent can increase the Q.Y. significantly………………………… .43.4.1-2 Using the strong σ-donating ligands…………………49.4.1-3 Using the Trans effect……………………………..….49.4.1-4 Using extended π-systems……………………………….56.4.1-5 Using the rigidity of the ancillary ligands………58.5 Reference………………………… ………………….………64.hapter 3 Mono- versus Di- nuclear PtII 6-(5-Trifluoromethyl-Pyrazol-3-yl)-2,2’-Bipyridine Complexes: Synthesis, Characterization and Remarkable Difference in Luminescent Properties…………………………………………………….………70 Abstract… ……………………………………………….……..70 Introduction………….………………………………………....71 Results and discussion Synthesis and Characterization………………………..……74 Photophysical Properties………………………………………77 Conclusion…………………………………….………………….86 Experimental Section General information and Materials………………………….87 X-ray diffraction studies…………………………… ………88 DFT Calculation Method……………………………… ……...88 Reference…………………………………… ……………...89 hapter 4 uthentic-blue Phosphorescent Iridium (III) Complexes Bearing Both Hydride and Benzyl Diphenylphosphine; Control of the Emission Efficiency by Ligand Coordination Geometry……………………………………….………………....105bstract… ………………………………………………………..106 Introduction…………………………………………..…….106 Experimental Section General information and Materials…… …………………108 Spectral and dynamic measurement………………………..108 X-ray diffraction studies…………………… ……………110 Computational methodology………………………………….110 Results and discussion………………………………………112 Conclusion……………………………………… …………….122 Reference…………………………………………………...…134hapter 5 esomorphism and Photophysics of Platinum (II) Complexes with Functionalized Pyridyl Pyrazolate Chelates………………………………………..………… ……….140 Introduction……………………………… ……………...…140 Experimental Section General Procedures………………… …………………....141 Spectral and dynamic measurement…………………..……142 X-ray diffraction studies……………… …………………143 DFT Calculation Method………………….........…143 esults and discussion Synthesis…………………………………………………...…144 Liquid crystalline properties…………………………….146 Photophysical Properties…… …………………… …148 Absorption………………………………………………………149 Emission………………………………………………………...149 Reference…………………………………………………...…1694789983 bytesapplication/pdfen-US液晶光譜動力學第三列過渡金屬liquid crystallinePlatinum (II) metal complex鉑金屬的光物理性質與液晶性質之探討 與 第三列過渡金屬光致發光性質之比較Photophysical and liquid crystalline properties (Platinum (II) complexes) and luminescent properties of third-row metal complexthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/187526/1/ntu-98-R96223154-1.pdf