胡哲明臺灣大學:生態學與演化生物學研究所莊樹嵐Chuang, Shu-LanShu-LanChuang2007-11-262018-07-062007-11-262018-07-062004http://ntur.lib.ntu.edu.tw//handle/246246/55118高等植物葉綠體trnKUUU基因的內插子屬於第二類內插子,其中包含一段開讀框,因其序列及結構和酵母菌粒線體的maturase相似,故稱之為matK,matK是葉綠體中唯一具有去除內插子弁鄋滌穧],只有較高等的輪藻和陸生植物的葉綠體trnK基因才有內插子和trnK5’-matK-trnK3’的結構,其他綠藻葉綠體的trnK並沒有matK開讀框、也沒有第二類內插子。葉綠體trnK5’-matK-trnK3’的結構在高等植物相當一致,但先前研究發現兩個matK脫離trnK而存在的例子,像是葉綠體嚴重退化的寄生植物Epifagus virginiana及因葉綠體基因重組而導致trnK外顯子丟失的鐵線蕨,它們的matK仍然具有完整的開讀框,顯示了matK的確十分重要而不可缺失,蘚苔類和松葉蕨也被證實具有trnK5’-matK-trnK3’的結構,但是在角蘚中卻發現其matK是偽基因。 本論文鑑定原始陸生植物其他未被檢視的重要類群中葉綠體matK基因的存在,結果發現瓶爾小草、過山龍、生根卷柏都有trnK5’-matK-trnK3’的結構,以RT-PCR偵測matK表現時,瓶爾小草和過山龍都有偵測到訊號,但生根卷柏卻沒有,顯示matK的表現在原始陸生植物似乎不是那麼一致。利用PCR的偵測並未能在水韮、木賊、觀音座蓮、紫萁、海金沙、芒萁等物種中放大出trnK或matK的片段。但是利用點式雜合反應則發現這些物種可能有matK序列的存在,顯示這些序列可能因變異太大而無法以PCR方式放大。故有關蕨類葉綠體matK的存在與否仍有待進一步研究。 以葉綠體matK核苷酸序列進行譜系分析,結果顯示部分裸子植物(松柏、銀杏、蘇鐵)和被子植物形成姊妹群,兩者再和麻黃類植物形成姊妹群。鄰近連接法和貝葉氏導出氏分析結果將松葉蕨、瓶爾小草,和生根卷柏的matK序列一起形成一個單源群,同屬石松類的過山龍與生根卷柏序列並未形成姐妹群。高度簡約分析則顯示過山龍和其他的擬蕨共同形成一個單源群,本論文的結果和前人研究不同,推測是原始陸生植物之matK演化速率太快、造成譜系分析長枝吸引的作用。 此外,密碼子使用分析的結果證實matK符合葉綠體平均密碼子使用情形,且密碼子使用偏移的情形和維持基因組內GC含量比例有關,因為密碼子的使用和演化篩選壓力及基因組核苷酸的組成有關,故密碼子使用狀況也反應了系群的演化關係。The introns of chloroplast trnKUUU belong to Group II introns which contain an open reading frame denoted as matK. The putative gene product MatK is the only one having maturase function in chloroplasts. The trnK5’-matK-trnK3’ structure is consistent in almost all examined higher land plants, and only those chloroplasts of land plants and higher green algae such as Characeae have introns in their trnK genes, but not in other green algae examined. However, chloroplast matK genes are indispensable since in nonphotosynthetic parasitic plant, Epifagus virginiana and fren, Adiantum capillus-veneris which chloroplast genome has rearrangememt, the chloroplast matK is functional even being a free-standing from with dismissed trnK exons. The chloroplasts of Psilotum, moss and liverworts all have trnK5’-matK-trnK3’ structure, but it is found that matK is a pseudogene in hornwort Anthoceros formosae. Little is known in other lower land plants, it is the purpose of this thesis to examine the presence of chloroplast matK gene is these taxa. We found a clear trnK5’-matK-trnK3’ structure in Ophioglossum petiolatum, Lycopodiella cernua and Selaginella doederleinii. PCR with degenerate primers failed to amplify any trnK or matK fragments from other ferns or allies. However, dot blot hybridization showed distinct signals in these plant failed to amplify matK fragments. Therefore the matK sequences might be too divergent to use ordinary PCR approach. RT-PCR results showed matK genes are expressed in Ophioglossum petiolatum and Lycopodiella cernua, but no signal detected in Selaginella doederleinii. So the function and expression of matK are not consistent in lower land plants. Phylogenetic analysis of matK sequence somewhat differ from previous studies, but the incongruence is likely due to the disputable sequence alignment, which causes long branch attraction that will affect phylogeneticinference. Nonetheless, the result showed that Pinus, Ginkgo, Cycas form a monophyletic group, which is sistered to angiosperms. Together, they from a clade that is sistered to Gnetales. Neighbor-joining and Bayesian show Pslosium, Ophioglossum, and Selaginella are monophyletic group. Most parsimony analysis shows Lycopodiella are monophyletic group with Pslosium, Ophioglossum, and Selaginella. Codon usage analysis showed that the use of codon in matK is in congruent with the average use of chloroplast genomes, showing a bias that can be explained by constraints on GC contents. The result of correspondence analysis suggests the codon usage of chloroplast matK has some properties that is correlated with their evolutionary relationship.致 謝 I 中文摘要 II Abstract IV 目 錄 VI 圖 次 VIII 表 次 IX 第一章 前言 1 第二章 材料與方法 8 1. 材料收集 8 2. 植物總DNA抽取 9 3. 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 10 3.1. PCR擴增葉綠體trnK/matK 10 3.2. PCR擴增matK基因片段 10 3.3. PCR擴增細胞核small ribosomal rDNA和葉綠體rbcL基因 10 4. PCR產物轉殖(Cloning) 11 4.1. 勝任細胞(Competent cell)的製備 11 4.2. 接合反應(Ligation) 12 4.3. 熱休克轉形反應(Heat shock transformation) 12 4.4. Colony PCR 12 4.5. 質體DNA抽取 13 5. 點式雜合反應(Dot blot) 13 5.1. 非放射性標定探針的製作 13 5.2. 尼龍膜製備 13 5.3. 雜合反應(Hybridization) 14 5.4. 訊號偵測(Detection) 14 5.5. 去除探針 15 6. 總RNA抽取 16 7. RT-PCR (Reverse transcriptase polymerase chain reaction) 17 7.1. DNase處理mRNA 17 7.2. First-strand cDNA synthesis 17 7.3. Second-strand cDNA synthesis 18 8. 密碼子使用分析(Condon usage analysis) 18 8.1. 各種胺基酸組成比例 19 8.2. A3s、T3s、G3s、C3s 19 8.3. GC與GC3組成 19 8.4. 有效密碼子數(Effective number of codons, Nc) 19 8.5. 相對同義密碼子使用值(Relative synonymous codon usage, RSCU) 20 8.6. 密碼子適應指數(Codon adaptation index, CAI) 20 8.7. 密碼子相關係數分析(Correspondence analysis, CA) 21 9. 譜系分析 21 9.1. 序列排序 21 9.2. 譜系分析方法 21 9.2.1. 鄰近連接法分析 22 9.2.2. 高度簡約樹分析 22 9.2.3. 貝葉氏導出式分析 23 9.2.4. 譜系樹差異性檢定 24 第三章 結果 27 第四章 討論 61 參考文獻 67 附錄 73 附錄一、本論文所使用引子的序列 73 附錄二、以各種引子擴增細胞核small ribosomal rDNA片段所得到之結果 75 附錄三、以各種引子擴增葉綠體rbcL片段所得到之結果 76 附錄四、PCR的反應流程 77 附錄五、本論文定序之細胞核small ribosomal rDNA核苷酸序列 79 1. 過山龍small ribosomal rDNA序列 79 2. 台灣水韮small ribosomal rDNA序列 79 3. 木賊small ribosomal rDNA序列 80 4. 瓶爾小草small ribosomal rDNA序列 80 5. 生根卷柏small ribosomal rDNA序列 81 6. 萬年松small ribosomal rDNA序列 81 附錄六、本論文定序之葉綠體rbcL核苷酸序列 82 1. 瓶爾小草rbcL序列 82 2. 生根卷柏rbcL序列 82 附錄七、本論文所使用葉綠體matK核苷酸序列排序 83 附錄八、本論文所使用葉綠體MatK胺基酸序列排序 103 附錄九、本論文所使用葉綠體matK之間的演化距離(pairwise distance) 1101084881 bytesapplication/pdfen-US葉綠體trnKmatK第二類內插子瓶爾小草卷柏密碼子使用石松SelaginellaOphioglossumchloroplastcodon usagegroup II intronLycopodium葉綠體matK基因在原始陸生植物的演化Evolution of chloroplast matK genes among lower land plantsotherhttp://ntur.lib.ntu.edu.tw/bitstream/246246/55118/1/ntu-93-R90226023-1.pdf