馬小康Ma, Hsiao-Kang臺灣大學:機械工程學研究所陳柏仁Chen, Bo-RenBo-RenChen2010-06-302018-06-282010-06-302018-06-282008U0001-2410200815482400http://ntur.lib.ntu.edu.tw//handle/246246/187042本研究係針對本團隊研發之單邊擺動壓電式薄膜泵進行分析與設計應用。該泵為一新式之壓電式薄膜泵,其利用壓電片震動來改變薄膜形狀,並藉由擺動之PDMS薄膜來驅動流體,並使用PDMS之閥體來控制流體方向。本壓電式薄膜泵腔體乃由CNC加工鋁材製成,該內部尺寸為45 mm × 28 mm × 4 mm。 本研究發現該泵之性能與其之閥體、主腔室、輸入電壓及操作頻率有關,因此可藉由以上參數之設計來改良該泵之流量與揚程。當輸入電壓為±50 V時,該改良後之流量可達4.4 ml/s, 而最大之揚程則達 8.33 kPa。另外,本文亦進行該泵應用之研究,開發出結合冷卻水套與薄膜泵的新型散熱式微泵(OAPCP-micropump),該泵腔室內設有鰭片,因此可以直接接在發熱源上,並藉由本微泵中震盪的流體衝擊腔室底部的鰭片,可以大幅增加熱傳之效能,故而可將之用來改善筆記型電腦的散熱性能與增進電子產品的可靠度。在研究中,發現腔體中的鰭片形狀與數量會影響腔體的流場與壓降,進而導致熱式微泵的性能發生改變。當鰭片高度為1.25(mm)時,該泵可以維持原有之流量。此外,在研究中發現,散熱式微泵之流量不因鰭片數量由6片增加至12片而有明顯衰減。在經改善後,散熱式微泵的最大流量為4.1 ml/s,而最大揚程則達9.8 kPa。當該微泵置於45W熱源之開放式與封閉式散熱系統中時,其元件熱阻分別為 0.15 oC/W 及0.35 oC/W。本封閉之系統在輸入熱源為30 W與45 W的狀態下,系統總熱阻皆可維持在0.97 oC/W之穩定狀態。A new type of micropump, a one side actuating diaphragm micropump, has been successfully developed to actuate liquid by the vibration of a diaphragm. The micropump with two valves is fabricated in an aluminum case by using highly accurate CNC machine, and the cross-section dimension is 28 mm ? 5 mm. Both valves and diaphragm are manufactured from PDMS. This Thesis indicates that the performance of the micropump is affected by the design of check valves, pump chambers, input voltages and frequencies. The improved design shows that the maximum flow rate is 4.4 ml/s and the maximum pump head is 8.33 kPa under ?50 V. In addition, the application of one-side actuating piezoelectric micropump (OAPCP-micropump), which is directly combined with a 45mm口試委員會審定書 I謝 II文摘要 IIIBSTRACT IVABLE OF CONTENTS VIST OF FIGURES VIIIIST OF TABLES XIIIIST OF SYMBOLS XIVHAPTER 1 INTRODUCTION 1.1 Background 1.1.1 Actuation of the micropumps 2.1.2 Valves in micropumps 5.1.3 Valves in the one-side actuating micropump 10.3 Motivation 12.4 Thesis Overview 14HAPTER 2 DEVELOPMENT OF A ONE-SIDE ACTUATING MICROPUMP 16.1 Ideal Cycle of the One-Side Actuation 17.2 Analysis of One-side Actuating 20.3 Analysis of the Valve 27.4 Analysis of the Flow Field in the Pump Chamber 32HAPTER 3 EXPERIMENTAL SET-UP 35.1 Fabrication of the One-Side Actuating Micropump 36.2 Investigation of the Displacement of the Actuating Part 40.2.1 Measuring the displacement of the piezoelectric device 40.2.2 Measurement of the flow resistance for the damping coefficient 41.3 Experimental Setups for One-Side Actuating Micropumps 42.3.1 The performance testing of a single micropump 43.3.2 Performance testing of the one-side actuating micropump in an open system 45.3.3 Thermal performance in a circulating system 47.4 The Experimental Setup of an OAPCP-micropump 48.4.1 Performance testing of the OAPCP-micropump in an open system 48HAPTER 4 SIMULATION MODEL 52.1 3-D Model for the One-side Actuating Micropump 53.2 Boundary Conditions of the Simulation Model 55.2.1 Assumptions of the Simulation Model 56.2.2 Actuating part 58.3 Mesh Dependency 63HAPTER 5 ANALYSIS OF PUMP PERFORMANCE 64.1 Original Design of a One-Side Actuating Micropump 65.1.1 Effect of the diaphragm 65.1.2 Effect of frequencies 66.2 Improved Design on Pump Chambers 70.2.1 Optimal length of pump chambers 70.2.2 Simulation study on a one-side actuating micropump 72.2.2 Effect of the equivalent mass 75.3 Improved Design of Valves 77.3.1 Valve vibration in the pump simulation model 77.3.1 Valve efficiencies at different frequencies 81.3.2 Pump performance with different valves 85.4 Pump Performance under Certain Pressure Heads 88.5 Pump Performance under Certain Input Voltages 90.6 Prediction of Pump Performance in a System 93.7 Thermal Performance of a One-Side Actuating Pump in a System 94.8 Effect of Cross Section at the Inlet and Outlet 98.9 One-Side Actuation Micropump with One Valve 103.10 Valveless One-Side Actuation Micropump 104.10.1 Numerical study of a valveless one-side actuation micropump 104.10.2 Flow rate of a valveless one-side actuation micropump 105.11 Pump Efficiency 106.12 Direction of the Inlet and Outlet 108HAPTER 6 PERFORMANCE OF THE OAPCP-MICROPUMP 110.1 Material of the Pump Chamber 113.2 Effect of the Fin Height on the Flow Rate 114.3 Effect of the Number of Fins and of the Valve on the Flow Rate 116.4 Oscillation Flow Effect on Thermal Performance 117.5 Optimum Performance of the OAPCP-Micropump and the Flow Rate 119.6 Pump Heads 121.7 Comparison of the Micropumps in the Cooling Systems 122HAPTER 7 CONCLUSIONS 125EFERENCE 128PPENDIX A 132PPENDIX B 133PPENDIX C 1383900155 bytesapplication/pdfen-US微泵壓電裝置液冷閥體冷卻水套MicropumpPiezoelectric deviceLiquid coolingValveCold Plate單邊擺動壓電式薄膜泵之設計與應用分析Design and Application of a One-side Actuating Diaphragm Micropumpthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/187042/1/ntu-97-F93522116-1.pdf