王富正臺灣大學:機械工程學研究所蘇偉儁Su, Wei-JiunWei-JiunSu2007-11-282018-06-282007-11-282018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/61356本論文討論慣質在汽車被動懸吊控制上的應用。我們將一個新的機械元件-慣質與傳統懸吊元件結合,套用到汽車懸吊系統中。慣質像彈簧、阻尼一樣,是一個被動式的元件。由於慣質的發明,使得機械網路系統得以完美的對應至電子網路系統。從分析的結果顯示,慣質可以增進汽車懸吊的性能。現今已有數種慣質的實現方式被建立且測試完畢。但由於慣質是一機械元件,所以會導致一些非線性的因素產生。我們將討論三種非線性因素 – 背隙、摩擦力、彈性效應,並將理論推導的結果與實驗所得的結果相互比較,以驗證慣質之性質。最後我們將討論慣質的非線性因素對汽車懸吊系統的影響。結果顯示非線性因素將稍微減少慣質所帶來的效能增益。This thesis discusses the application of Inerter to passive vehicle suspension control. We employ a new mechanical element – Inerter into vehicle suspension systems, combining it with traditional suspension elements. Inerter is a passive element like a spring or a damper. By the invention of Inerter, the mechanical network can be analogous to the electrical network perfectly. From the result of analysis, we find Inerter can improve the vehicle suspension performance potentially. Until now, several realizations of Inerters were constructed and tested. Due to mechanical construction, some nonlinearities of Inerter were noted. We discuss three kinds of nonlinearities – backlash, friction, and the elastic effect, and compare the theoretical and experimental results to verify the property of Inerters. Finally we discuss the influence of Inerter nonlinearities to vehicle suspension performance. It is shown that nonlinearities slightly decrease the performance benefit of Inerters.Acknowledgements I Abstract III 中文摘要 V Contents VII List of Figures XI List of Tables XVII Chapter 1. Introduction 1 1.1. Vehicle suspensions 1 1.1.1. Passive suspensions 1 1.1.2. Active suspensions 2 1.2. The purposes for research 2 1.3. Outlines of the dissertation 3 Chapter 2. The concept of Inerters 5 2.1. The traditional mechanical-electrical analogy 5 2.2. Inerter 7 2.3. The mechanical-electrical analogy applied Inerters 7 Chapter 3. Ideal Inerters applied to vehicle suspension design 9 3.1. The meanings of the symbols 9 3.2. The quarter-car analysis 10 3.2.1. The parameters settings 10 3.2.2. The dynamic equations 11 3.2.3. Performance indexes 12 3.2.4. Optimization of performance indexes 13 3.3. The half-car analysis 19 3.3.1. The parameters settings 20 3.3.2. The dynamic equations 21 3.3.3. Optimization of performance indexes 22 3.4. The full-car analysis 27 3.4.1. The parameters settings 27 3.4.2. The dynamic equations 29 3.4.3. Optimization of performance indexes 31 3.5. Summary and comments 35 Chapter 4. Nonlinearities of Inerter 37 4.1. Backlash and the elastic effect 37 4.1.1. Eliminating backlash for ballscrew 39 4.2. Friction 40 4.3. Inerter applied the nonlinearities 40 Chapter 5. Experimental results 43 5.1. Experimental system design 43 5.1.1. Hardware 43 5.1.2. Software 44 5.1.3. The system identification 44 5.2. Experimental and theoretical results 45 5.2.1. The testing Inerter 45 5.2.2. The theoretical analysis 45 5.2.3. The time-domain response 48 5.2.4. The frequency-domain response 50 Chapter 6. The impact of Inerter nonlinearities on vehicle suspension systems 53 6.1. The analysis method 53 6.1.1. Input signal settings 54 6.2. Performance indexes by applying friction 55 6.2.1. The quarter-car analysis 55 6.2.2. The half-car analysis 60 6.2.3. The full-car analysis 63 6.3. Performance indexes by applying the elastic effect 66 6.3.1. The quarter-car analysis 67 6.3.2. The half-car analysis 72 6.3.3. The full-car analysis 76 6.4. Performance indexes by applying real Inerters 82 6.4.1. The quarter-car analysis 82 6.4.2. The half-car analysis 86 6.4.3. The full-car analysis 88 6.5. Summary and comments 92 Chapter 7. Conclusions 93 7.1. Main contributions 93 7.2. Direction for future research 94 Reference 95 Suggestions of committee members 972193426 bytesapplication/pdfen-US慣質被動式元件懸吊系統非線性Inerterpassive elementsuspensionnonlinear慣質之非線性因素及其對汽車懸吊系統設計之影響The nonlinearities of Inerter models and their impact on vehicle suspension designthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61356/1/ntu-95-R93522804-1.pdf