吳錫侃臺灣大學:材料科學與工程學研究所謝人杰Hsieh, Ren-JayRen-JayHsieh2007-11-262018-06-282007-11-262018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/55354本研究針對鈦鎳銅三元形狀記憶合金與鋯基非晶質合金Zr55Al10Ni5Cu30之制振能進行探討。對Ti50Ni35Cu15及Ti51Ni41Cu8形狀記憶合金而言,其變態峰之阻尼值在頻率1Hz,昇降溫速率為3℃/min時,均可達到tanδ0.05以上;但如保持恆溫30分鐘以上,則其阻尼值則會大幅下降,降幅可達82%以上。而其弛豫峰的阻尼值則不會因持溫而大幅下降,且其阻尼值會隨振幅增加而上昇,兩者呈自然指數成長關係。鋯基非晶質合金之制振能雖較鈦鎳銅形狀記憶合金為低,但強度高,如增大其振幅,亦可使其阻尼值上昇,且振幅與其阻尼值亦呈自然指數成長關係。充氫處理對厚度較薄之鋯基非晶質合金制振能有明顯改善,在100mA/mm2之電流密度下充氫2小時,可使薄帶鋯基非晶質合金在頻率1Hz下,昇速溫速率為3℃/min時之tanδ值大於0.01,但較厚之鋯基非晶質合金則無法有明顯改善,其原因可能為厚度對氫原子擴散至試片內部之差異所導致。Abstract Ren-Jay Hieh This study focused on the damping capacity of TiNiCu ternary shape memory alloys and of Zr-based amorphous alloys, Zr55Al10Ni5Cu30. The damping values, tanδ, at transient peaks of Ti50Ni35Cu15 and Ti51Ni41Cu8 are both over 0.05 at cooling rate of 3℃/min with frequency 1Hz; after keeping the peak temperature for 30mins and above, the tanδ values of Ti50Ni35Cu15 and Ti51Ni41Cu8 are both descends over 82%. On the other hand, the tanδ values at relaxation peaks don’t drops dramatically after keeping peak temperature, however, they ascends with increasing amplitude. Comparing to TiNiCu shape memory alloys, Zr-based amorphous alloys have lower damping capacity but higher strength, However, its tanδ values increase with larger amplitude. Hydrogenation improves the damping capacity of Zr-based amorphous alloys with thinner thickness remarkably, the tanδ value at cooling rate of 3℃/min with frequency 1Hz exceeds 0.01 after hydrogenation under 100mA/mm2 current density for 2 hrs, but hydrogenation can’t improve the damping capacity of Zr-based amorphous alloys with higher thickness as well, it might due to the difference of H atoms diffusing into specimen result from the different thickness.中文摘要…………………………………………………........i 英文摘要……………………………………………………….ii 目錄……………………………………………………………iii 第一章 前言............................................................................1 第二章 文獻回顧...................................................................6 2-1 形狀記憶合金簡介………………………………………………6 2-1-1 熱彈型麻田散體變態……………………………………….7 2-1-2 形狀記憶效應……………………………………………….9 2-1-3 擬(超)彈性…………………………………………………10 2-2 鈦鎳基形狀記憶合金…………………………………………...13 2-2-1 TiNi二元合金之相與結晶構造………………….……...13 2-2-2 TiNiCu三元形狀記憶合金……………………...………..15 2-3 鈦鎳合金的力學行為…………………………………………..17 2-4 材料的阻尼性質………………………………………………..19 2-4-1 阻尼的種類………………………………………………..20 2-4-2 材料的阻尼機構與現象…………………………………..22 2-4-3 麻田散體相變態的阻尼特性……………………………..26 2-4-4 鈦鎳合金的低頻內耗特性………………………………..27 2-4-5 頻率與材料阻尼的關係…………………………………27 2-4-6 阻尼值的計算……………………………………………28 2-5 非晶質合金……………………………………………………29 2-5-1 非晶質合金之機械性質…………………………………30 2-5-2 非晶質合金之製備……………………………………….30 2-5-3 非晶質合金之應用……………………………………….31 第三章 實驗方法與步驟…………………………..41 3-1 合金配製與熔煉………………………………………………42 3-2 熱處理與充氫處理……………………………………………43 3-3 DSC量測……………………………………………………...44 3-4 DMA量測…………………………………………………….44 3-4-1 動態機械分析的定義……………………………………46 3-4-2 動態機械分析的原理……………………………………46 3-4-3 儀器架構…………………………………………………47 3-4-4 使用單或雙懸臂時的考量………………………………48 3-4-5 一般樣品的製備要點……………………………………48 3-5 本研究之實驗流程圖…………………………………………49 第四章 鈦鎳銅形狀記憶合金之實驗結果與討論……59 4-1 Ti50Ni35Cu15形狀記憶合金之實驗結果及討論…………….59 4-1-1 DSC………………………………………………………59 4-1-2 DMA─溫度掃瞄模式(Temperature Sweep)…………….60 4-1-3 DMA─多頻掃瞄模式(Multi-Frequency)………………..61 4-1-4 DMA多應變掃瞄模式(Multi-Strain)…………………...62 4-1-5 DMA─特定持溫模式(Constant Temperature)…………..63 4-2 Ti51Ni41Cu8之實驗結果與討論……………………………..65 4-2-1 DSC………………………………………………………65 4-2-2 DMA溫度掃瞄模式…………………………………….66 4-2-3 DMA特定持溫模式…………………………………….68 4-2-4 DMA多頻掃瞄模式…………………………………….69 4-2-5 DMA多應變掃瞄模式…………………………………70 4-3 綜合討論………………………………………………………71 第五章 鋯基非晶質合金之實驗結果與討論…………89 5-1 柱狀鋯基非晶質合金之實驗結果與討論……………………89 5-1-1 DSC與XRD量測結果…………………………………89 5-1-2 DMA─溫度掃瞄模式……………………………………89 5-1-3 DMA─多應變掃瞄模式…………………………………90 5-1-4 DMA─多頻掃瞄模式……………………………………91 5-1-5 DMA─特定持溫模式……………………………………92 5-1-6 充氫處理對柱狀鋯基非晶質合金阻尼值之影響………93 5-2 薄帶鋯基非晶質合金之實驗結果與討論……………………93 5-2-1 高溫DSC量測結果………………………………………93 5-2-2 XRD量測結果……………………………………………94 5-2-3 DMA─溫度掃瞄…………………………………………94 5-2-4 DMA─多應變掃瞄………………………………………95 5-2-5 充氫處理對薄帶鋯基非晶質合金阻尼值之影響………95 5-2-6 拉伸試驗結果與討論……………………………………96 5-3 板狀非晶質合金之實驗結果與討論…………………………96 5-3-1 DSC量測結果……………………………………………97 5-3-2 XRD量測結果……………………………………………97 5-3-3 DMA─溫度掃瞄模式……………………………………98 5-3-4 DMA─多應變掃瞄模式…………………………………98 5-3-5 DMA─多頻掃瞄模式…………………………………100 5-3-6 充氫處理對板狀鋯基非晶質合金阻尼值之影響………101 5-3-7 綜合討論…………………………………………………102 第六章 結論……………………………………………120 參考文獻…………………………………………………12314017411 bytesapplication/pdfen-US鈦鎳銅形狀記憶合金鋯基非晶質合金制振能阻尼值tanδ振幅充氫處理TiNiCu shape memory alloysZr-based amorphous alloysDamping Capacity tanδAmplitudeHydrogenation鈦鎳銅形狀記憶合金與鋯基非晶質合金 低頻制振能之研究A study on low frequency damping capacity of TiNiCu shape memory alloys and Zr based amorphous alloysthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/55354/1/ntu-94-R92527041-1.pdf