周元昉臺灣大學:機械工程學研究所紀兆騏Chi, Chou-ChiChou-ChiChi2007-11-282018-06-282007-11-282018-06-282004http://ntur.lib.ntu.edu.tw//handle/246246/61299聲子晶體的頻帶間隙特性造就許多有效的新裝置。本文研究具平面應力特性的二維壓電聲子晶體的波傳頻譜,探討影響其頻帶間隙的各種重要參數。首先利用平面應力的條件配合上下表面電性的邊界條件,推導出含壓電行為的等效彈性係數,再利用平面波展開法推導其波傳理論。用倒晶格向量配合布洛赫理論對相關的材料常數與位移作傅立葉展開,代入波動方程式,推導出一廣義特徵方程式,利用數值方法可解出特徵值和特徵向量,由此可得二維壓電週期結構之波傳頻譜與位移場形。 使用前述推導的理論,針對不同的材料組成、填充比和填充物形狀等,探討其對頻帶間隙的影響,研究發現週期結構以三種材料組成所得的頻帶間隙會比兩種材料組成的還要高頻且頻帶更寬。且以金屬為核心材料,壓克力為外層包覆材料,壓電材料為基材,圓形正方晶格排列的週期結構,在第六、第七色散曲線間,具有高頻且頻帶很寬的頻帶間隙。另外,探討此材料組成下,上下表面有無鋪設電極、壓電效應等對頻帶間隙的影響,以及各個頻帶的位移場形圖,進一步瞭解各處質點的運動軌跡,提供更多可資應用的特性。Possessing the properties of band gaps, phononic crystals have led the invention of many new devices. In order to handle this characteristic potential, the spectrum of a plane-stress piezoelectric photonic crystal is studied in this thesis. First of all the plane-stress and electric boundary conditions are employed to derive the equivalent elastic moduli. The plane wave expansion method and the Bloch theorem are used to modify the wave equation into the one fit for periodic structures. The material parameters and displacement fields are expanded with Fourier series with respect to reciprocal lattice vectors. Finally, a generalized eigenvalue problem is formed that is solved with numerical method to obtain the frequency spectrum and the displacement fields. The band gaps are found from the frequency spectrum. In order to handle the frequency span of band gaps, a study based on changing the materials, the filling ratio and the shape of inclusions is performed. Wide band gaps can be achieved by using composite inclusions that is made of two different kinds of materials. When metals are used as the core materials that are surrounded with PMMA to form the inclusions, and piezoelectric material as the host matrix provides very wide band gaps. In addition, the effects of electrodes are also studied. Finally, by observing the phase of the displacement field, the locus of particles in the periodic structure is further understood that also provide useful information.中文摘要 i 英文摘要 ii 目錄 iii 表目錄 v 圖目錄 vi 符號表 xi 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2-1 理論部分 2 1-2-2 實驗部分 4 1-3 本文目的與內容簡介 5 第二章 二維週期結構波傳特性 7 2-1 倒晶格向量(Reciprocal lattice vectors) 7 2-2 布里淵區(Brillouin Zone) 9 2-3 布洛赫理論(Bloch Theorem) 9 第三章 二維壓電週期結構波傳理論 11 3-1 PZT和氮化鋁壓電材料簡介 11 3-2 非均質壓電平板之平面應力的波傳問題 13 3-2-1 電極效應對壓電平板應力的影響 14 3-2-1-1 上下表面均有電極 14 3-2-1-2 上下表面均無電極 15 3-2-2 運動方程式 17 3-3 用平面波展開法解二維壓電週期結構的波傳問題 17 3-4 兩種材料組成的週期結構 20 3-4-1 圓形結構函數 21 3-4-2 正方形結構函數 22 3-5 三種材料組成的週期結構 22 3-5-1 圓形結構函數 23 3-5-2 正方形結構函數 24 第四章 二維壓電週期結構之頻譜 25 4-1 數值方法介紹 25 4-2 誤差討論 25 4-3 兩種材料組成與三種材料組成二維週期結構之比較 27 4-4 上下表面有電極與無電極的比較 28 4-5 搭配不同的壓電材料與核心材料的比較 30 4-6 圓形結構函數與正方形結構函數的比較 31 4-7 壓電效應對頻譜結構的影響 32 4-8 二維壓電週期結構平面應力位移模態圖 32 第五章 結論與建議 35 參考文獻 37 附圖 39 附錄 773265938 bytesapplication/pdfen-US平面應力聲子晶體頻帶間隙三種材料壓電平面波展開法phononic crystalpiezoelectricband gapthree componentplane-stressplane wave expansion method二維壓電聲子晶體之頻帶間隙研究Band Gaps Study for Two-Dimensional Piezoelectric Phononic Crystalsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61299/1/ntu-93-R91522501-1.pdf