指導教授:洪一平臺灣大學:資訊網路與多媒體研究所林可昀Lin, KevinKevinLin2014-11-292018-07-052014-11-292018-07-052014http://ntur.lib.ntu.edu.tw//handle/246246/263467本研究提出一個遺留物偵測方法,能夠有效偵測出監控環境中被放置的遺留物。 我們提出藉由結合 short-term 與 long-term 背景學習模型,對影像中的像素進行編碼與分類。同時,我們為影像中每一個像素建立一個有限狀態機,分析該像素的狀態轉換與變化過程,進而決定該像素是否屬於靜止不動的前景。為了完整分析遺留物的事件,我們追朔過去一段時間內的移動物體軌跡,分析並驗證嫌疑犯是否確實遠離了遺留物,並不再回來。 我們所提出的方法在兩個公開測試資料庫(PETS2006和 AVSS2007)獲得穩定、有效的偵測結果,並在偵測數據上勝過其他相關研究。This thesis presents an effective approach for detecting abandoned luggage in surveillance videos. We combine short- and long-term background models to extract foreground objects, where each pixel in an input image is classified as a 2-bit code. Subsequently, we introduce a finite-state machine framework to identify static foreground regions based on the temporal transition of code patterns, and to determine whether the candidate regions contain abandoned objects by analyzing the back-traced trajectories of luggage owners. The experimental results obtained based on video images from 2006 Performance Evaluation of Tracking and Surveillance (PETS2006) and 2007 Advanced Video and Signal-based Surveillance (AVSS2007) databases show that the proposed approach is effective for detecting abandoned luggage, and that it outperforms previous methods.口試委員會審定書 i 致謝ii 中文摘要iii Abstract iv Contents v List of Figures vii List of Tables x 1 Introduction 1 1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Temporal Dual-rates Foreground Integration Method 4 2.1 Review of Background Modeling and Learning Rates . . . . . . . . . . . 4 2.2 Long-term and Short-term Background Modeling . . . . . . . . . . . . . 6 2.3 Foreground Extraction using the Complimentary Background Model . . . 8 2.4 Static Foreground Detection via Pixel-based Finite State Machine (PFSM) 10 3 Back-Tracing Verification 14 3.1 Pedestrian Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Owner Identification using the Back-Tracing Verification . . . . . . . . . 18 3.3 Object Abandoned Event Analysis . . . . . . . . . . . . . . . . . . . . . 23 4 Experimental Results 24 4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Results on PETS2006 and AVSS2007 . . . . . . . . . . . . . . . . . . . 26 4.2.1 PETS2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.2 AVSS2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Effectiveness of PFSM and Back-tracing Verification . . . . . . . . . . . 29 4.4 Realistic Environment Detection in Our Own Sequence . . . . . . . . . . 30 5 Conclusion 34 References 3513465037 bytesapplication/pdf論文公開時間:2016/08/01論文使用權限:同意有償授權(權利金給回饋學校)遺留物偵測靜態前景偵測基於像素的有限狀態機物主驗證行人偵測監控視訊中偵測遺留物之研究Abandoned Luggage Detection for Visual Surveillancethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/263467/1/ntu-103-R01944012-1.pdf