2012-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/672503摘要:本研究為四&#63886;期之計畫。我們擬合成自主裝孔洞材料與採用天然礦物,經適當的物理或化學修飾其表面特性,用於溫室氣體的儲存。第一&#63886;我們擬開發關鍵性的自組裝合成方法,包含噴霧熱分解法、軟性模板法與奈米鑄造法,同時純化與活化天然礦物以獲得高表面積的吸附材料。我們將系統性地探討製備&#63851;&#63849;對材料結構、表面型貌及吸脫附能力的影響。第二&#63886;我們擬採用物理與化學修飾方法,如迴流嫁接法與離子嵌入技術等,提高製得材料的吸附能力。我們將利用光譜技術(如in-situ FTIR、 in-situ XRD與XAS)探討氣體儲存的機制與材料結構變化。第三&#63886;我們將建置氣體儲存量測系統包括常壓體積量測法 (room-pressure volumetric analysis)與高壓重量量測法(high-pressuregravimetric analysis),以精準分析氣體在大範圍的溫度與壓力變化下的吸脫附行為。透 過變壓與變溫吸附實驗探討製得材料對氣體的吸附容量、吸附選擇性與動力學、熱力學&#63851;&#63849;。第四&#63886;我們將評估脫附能耗與吸脫附循環週期長短,評估各製得材料的氣體儲存能力與穩定性,並將人工合成材料與天然礦石作一比較。本研究預計開發高表面積、高穩定性新型吸附材料的關鍵技術,探討氣體儲存的機制以及評估其對氣體吸脫附的特性,提供有效捕集二氧化碳系統,希冀有效解決當前環境問題。<br> Abstract: In this 4-year project, we will focus on discovering new materials for CO2 capture economically and efficiently that is important for current environmental issue. In the first year, we intend to develop facile self-organized synthesis methods, including spray pyrolysis method, soft template method, and nano-casting method, and purification and activation of natural minerals to achieve the high surface area adsorption materials. We will systematically explore the effects of the parameters of the preparation processes on the material structures, surface properties and desorption capacity. The second year various physical and chemical modification methods, such as grafting reflux and ion embedded technology will be performed to improve the adsorption capacity of the material obtained. We will use spectroscopic techniques (such as in-situ FTIR, in-situ XRD and XAS) to investigate the nature of gas absorbed into the structure of inorganic materials. The third year we will build CO2 capture measurement methods under a wide range of temperature and pressure changes, including a room-pressure volumetric analysis and a high-pressure gravimetric analysis. Using temperature and pressure swing adsorption experiments, the CO2 adsorption capacity, selectivity and kinetics of adsorption, thermodynamic parameters will be achieved. The fourth year we will assess desorption energy and repeat adsorption-desorption cycles, to evaluate the stability of the obtained materials, and make a comparison between synthetic materials and natural minerals. The study is expected to develop robust, high-surface-area, new adsorption materials, to investigate the mechanisms of CO2 capture and to assess the characteristics of the CO2 desorption which will facilitate the design of effectively capture carbon dioxide systems for meeting environmental demand.天然礦物孔洞材料氣體儲存self-organizednatural mineralCO2 capture自組裝孔洞材料與天然礦物對二氧化碳補集及其機制探討