王暉臺灣大學:電信工程學研究所黃品甄Huang, Ping-ChenPing-ChenHuang2007-11-272018-07-052007-11-272018-07-052006http://ntur.lib.ntu.edu.tw//handle/246246/58856本論文描述兩個在無線收發機的重要元件:壓控振盪器與混波器。而本研究的重點是在於將其設計製作於互補式金氧半場效電晶體或矽鍺製程上並研究在高頻中的表現。 由於互補式金氧半場效電晶體的電流增益截止頻率(fT)與最高振盪頻率(fmax)原本較三五族元件或是矽鍺雙極電晶體來得低,因此在設計毫米波互補式金氧半場效電晶體壓控振盪器時,研究不同的負阻架構在高頻的特性極為必要。在本論文中,將會分析與比較不同的振盪器架構,而最後的結論是在源極端以並聯的電感與電容相接的負阻架構會是在設計毫米波互補式金氧半場效電晶體壓控振盪器的較佳選擇,因其負阻在高頻有較佳的特性,且其負阻的頻率響應有多個變數可加以調整。 首先是一個以90-nm互補式金氧半場效電晶體製程製作的131-GHz推推交叉耦合振盪器。可調的頻率範圍可從129.8至132 GHz,而預估在10 MHz 處的相位雜音為-108.4 dBc/Hz。在核心電路偏壓電流為20 mA以及偏壓為1 V時,此振盪器可提供輸出功率為-15.2 dBm的二次諧波輸出訊號以及+0.33 dBm的基頻輸出訊號。最大二次諧波與基頻訊號輸出的功率分別是-11.4 dBm與+2.1 dBm。此振盪器是目前互補式金氧半場效電晶體振盪器中輸出頻率最高者。 利用在源極端以並聯的電感與電容相接的負阻架構的,是一個以0.13-μm互補式金氧半場效電晶體製程製作的114-GHz推推振盪器。在核心消耗功率為8.4 mW下,其基頻輸出訊號可調範圍為56.4至57.6 GHz,而二次諧波頻輸出訊號可調範圍則為112.8至115.2 GHz。在10 MHz處,量測到的基頻輸出訊號的相位雜訊為-113.6 dBc/Hz。此振盪器為第一個操作頻率高於100 GHz的互補式金氧半場效電晶體壓控振盪器,也是在毫米波互補式金氧半場效電晶體壓控振盪器當中具有最高指係值(F. O. M.)者。 另外,在源極端以並聯的電感與電容相接的方法也可以應用在交叉耦合對的負阻架構中以提高最高的可得的振盪頻率。此實驗結果是一個以0.15-μm砷化鎵場效電晶體製程製作的85-GHz推推振盪器。在偏壓電壓與電流分別為3 V與52 mA時,85.7 GHz輸出訊號的輸出功率為-12 dBm,而在1 MHz處,其相位雜訊為-92.33 dBc/Hz。 最後為一利用0.18-μm矽鍺雙極電晶體製程製作的寬頻吉伯特細胞上轉換混波器。此小面積的電路可提供從35 GHz至65 GHz 平坦的7 ± 1.5 dB轉換損耗,以及在RF端大於40 dB以上LO訊號的抑制。此電路在4-V偏壓下的消耗功率為14 mW,而晶片面積為0.6 mm × 0.45 mm。本混波器是以矽基製程製作的上轉換混波器中面積最小且操作頻率最高者。This thesis presents two major building blocks in wireless transceivers: the VCO and the mixer. They are both highlighted with its high-frequency performance in CMOS or SiGe technology. Due to the inherently lower unit current-gain frequency (fT) and maximum oscillation frequency (fmax) of CMOS devices as compared to III-V compound devices or SiGe HBT, it is crucial to investigate the high frequency behaviors of negative resistance cells when designing MMW CMOS VCOs. Several VCO topologies are analyzed and compared in this thesis. And it is concluded that the LC source degenerated negative-resistance cell can be a better candidate for MMW CMOS VCOs because of its better frequency behavior and the multiple dimension of design parameters that shape the frequency response of the negative resistance. The design and implementation of a 131-GHz push-push cross-coupled VCO in 90-nm CMOS technology will be described. It can be tuned from 129.8 to 132 GHz, with an estimated phase noise of -108.4 dBc/Hz at 10 MHz offset. The oscillator provides a push-push output power of -15.2 dBm and a fundamental output power of +0.33 dBm, under core current of 20 mA from a 1-V supply voltage. Maximum push-push and fundamental output powers are -11.4 dBm and +2.1 dBm, respectively. This VCO is the one with highest output frequency among CMOS VCOs. Then the LC source degenerated VCO will be demonstrated through a 114-GHz VCO in 0.13-μm CMOS technology. With core power consumption of 8.4 mW, the tuning range at the fundamental port is from 56.4 GHz to 57.6 GHz, and at the push-push port is from 112.8 GHz to 115.2 GHz. The measured phase noise at the fundamental port is -113.6 dBc/Hz at 10-MHz offset. This VCO is the first CMOS VCO beyond 100 GHz and is believed to have the best figure of merit (FOM) among millimeter-wave (MMW) VCOs using bulk CMOS processes. An 85-GHz push-push VCO in 0.15-μm GaAs pHEMT technology shows that the LC source degeneration can also be applied to a cross-coupled pair to increase the operation frequency. Under total bias current of 52 mA from a 3-V supply, the output power of this VCO is -12 dBm at 85.7 GHz, and the phase noise at 1-MHz offset is -92.33 dBc/Hz. Finally, the design of a broadband Gilbert-cell up-conversion mixer in 0.18-μm SiGe BiCMOS technology is presented. The compact MMIC has a flat measured conversion loss of 7 ± 1.5 dB and LO suppression of more than 40 dB at the RF port from 35 to 65 GHz. The power consumption is 14 mW from a 4-V supply. With chip size of 0.6 mm × 0.45 mm, this mixer has the smallest chip area ever reported, and also the highest operation frequency among up-conversion mixers using silicon-based technology.Chapter 1 Introduction: Millimeter-Wave CMOS Circuit Design 1.1 Background and Motivation…………………………1 1.2 Literature Survey……………………………………2 1.3 Contributions…………………………………………5 1.4 Chapter Outlines…………………………………….6 Chapter 2 Negative-Resistance Analysis of LC VCO Topologies 2.1 LC VCO Basics…………………………………………8 2.1.1 Negative-Resistance Analysis of Oscillators…9 2.1.2 LC VCO Models…………………………………………13 2.2 Negative-Resistance Analysis of Commonly-Used VCO Topologies...............................15 2.2.1 Cross-Coupled LC VCOs………………………………15 2.2.2 Capacitive Degenerated LC VCOs………………….19 2.3 LC Source Degenerated VCOs……………………….24 2.3.1 Technology and Device Model………………………26 2.3.2 Design Parameters of LC Source Degenerated VCO…27 Chapter 3 Voltage-Controlled Oscillators 3.1 Implementations of LC Tanks………………………33 3.1.1 Inductors………………………………………………35 3.1.2 Varactors………………………………………………39 3.2 Push-Push VCO Basics……………………………….42 3.3 A 131-GHz Push-Push CMOS VCO…………………….45 3.3.1 Technology Description…………………………….45 3.3.2 LC-Tank Implementation…………………………….46 3.3.3 Circuit Design……………………………………….49 3.3.4 Measurement Results…………………………………53 3.4 A 114-GHz Push-Push CMOS VCO…………………….55 3.4.1 Technology Description…………………………….55 3.4.2 LC-Tank Implementation…………………………….56 3.4.3 Circuit Design……………………………………….58 3.4.4 Measurement Results………………………………..64 3.5 An 85-GHz Push-Push GaAs Oscillator…………..67 3.5.1 Technology Description…………………………….67 3.5.2 Circuit Design……………………………………….68 3.5.3 Measurement Results…………………………………71 Chapter 4 Active Mixers…………………………….75 4.1 Mixers in Wireless Transceivers…………………75 4.2 Active Mixers – Theory of Operation………….76 4.2.1 Single-Balanced Mixer………………………………….77 4.2.2 Double-Balanced Mixer………………………………….78 4.3 A 35-65 GHz Up-Conversion Gilbert Cell Mixer…80 4.3.1 Technology Description…………………………………80 4.3.2 Passive Components………………………………………81 4.3.3 Circuit Design……………………………………………83 4.3.4 Measurement Results…………………………………….86 Chapter 5 Conclusions...........................................91 References…………………………………………………………92en-US振盪器混波器毫米波VCOmixermillimeter-wave毫米波壓控振盪器與混波器之研製Design of Millimeter-Wave VCOs and Mixerthesis