2008-08-012024-05-15https://scholars.lib.ntu.edu.tw/handle/123456789/666405摘要:本研究主要探討軟性球體粒子在微奈米流體通道的電動力學現象。為了清楚描述軟球在通道中的運動情形,我們突破幾何系統的座標限制,採取球座標與圓柱座標描述此物理系統,且針對任意表面電位、任意電雙層厚度以及管壁因材料特性而帶電情況做研究,並利用Chebyshev多項式為基底的正交配位法進行六區聯解以求系統之穩態解。   研究結果發現,在高表面電位時由於極化效應的影響,造成電泳動度有一極值產生。而在軟球方面,粒子也因軟球層所帶電荷密度及摩擦阻力大小皆會影響電泳運動,且隨不同軟球度厚度有不同效應。另一方面,當電雙層厚度較厚時由於受通道邊界的影響,此時電雙層會受到擠壓而變形,故使軟球粒子泳動速度因邊界效應而變慢;反之電雙層較薄時較不受限於邊界。且不論電雙層厚度大小,在通道半徑達一定值時則可忽略邊界效應。此外,管壁帶電與否將有效改變電泳的運動狀態,因此做電泳分析時也必須注意材料的選擇,錯誤的背景預估將會造成相當大的誤差。 <br> Abstract: In this study, the capillary electrophoresis (CE) of a nano-biomaterial particle is investigated theoretically under the conditions of arbitrary surface potential, arbitrary double layer thickness, and the charged of the wall or not. We adopt the circular cylindrical and the spherical coordinate to describe this system, and a patched pseudo-spectral method based on Chebyshev polynomial is used to solve the equations. We found that the retardation coefficient decreases the particle mobility in general, while as the mobility is proportional to the total amount of fixed charge. In addition, the differences of soft layers bring about different electrophoretic velocities. The presence of the capillary wall retard the particle motion in general, and the surface potential of the capillary wall dramatically affect the particle motion. Sometimes the particle may even turn to the opposite direction! Since the exact value of wall surface potential is contingent upon the particular choice of the capillary material, this dependence yields a great potential of highly effective selectivity in various biosensor applications.奈米通道電動力學邊界效應軟球膠體粒子NanochannelsElectrokinetic BehaviorsBoundary EffectSoft Colloid微奈米通道中非硬性膠體粒子之電泳現象研究