林唯芳臺灣大學:材料科學與工程學研究所張國馨Chang, Kuo-HsinKuo-HsinChang2007-11-262018-06-282007-11-262018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/55230由於高折射率材料有廣泛的應用性,如光波導材料(Optical waveguide)與光學鏡片等,因此我們製備高折射率材料。 為了達到奈米複合材料之折射率大於1.6的目標,本論文分成四個部分:首先,藉由改變不同的高分子與二氧化矽之重量比以了解折射率隨著重量組成而改變的情形。結果發現材料的折射率會隨著二氧化矽含量的增加而下降。這是由於二氧化矽本身的折射率較低,因此製備成奈米複合材料後導致整體折射率降低。雖然在此階段中無法達成高折射率的目標,但是經由材料的熱性質以及機械性質的分析後發現到一個很有趣的現象,就是當二氧化矽含量達40 wt%後,這兩種物性皆呈現非線性的上升。因此嘗試藉由原子力顯微鏡(AFM)觀察材料表面型態(surface morphology),希望能藉由微觀尺度來探討表面型態與材料物性之關連性。結果亦發現當二氧化矽含量達40 wt%後,奈米粒子在高分子母體中呈現有序規則排列,這樣的網狀(network)結構就侷限住高分子的移動,因此造成材料的Tg、硬度以及Young’s modulus皆呈現非線性上升。由此可知二氧化矽含量40 wt% 為此系統之percolation threshold。 此外。我們以AFM搭配臨場(in-situ)加熱附件並藉由影像分析軟體找出不同無機含量下混成材料的表面玻璃轉移溫度(Tg, surface),將結果與DSC及TMA所得Tg比較。我們發現當二氧化矽奈米粒子含量達40 wt%後,DSC與TMA皆無法測得其Tg,但是仍然可由臨場加熱AFM測得。這是由於AFM探針較TMA小許多,因此可偵測出材料表面細微的變化。 在第二個部分中,以外層包覆矽氧烷類之非晶型(amorphous)二氧化鈦與EOBDA (ethoxylated (3) bisphenol A diacrylate) 製備出奈米複合材料,其折射率隨著二氧化鈦量的增加而上升。當二氧化鈦含量為15.6 wt%時,在波長為633 nm情況下之折射率可由1.5648增加至1.6161;並且於850 nm、1310 nm與1550 nm的光穿透度皆達93%以上。 在第三個部分中,以油酸(oleic acid)進行表面改質所製備的銳鈦型(anatase)二氧化鈦與BMAEP(Bis[2-(methacryloyloxy)ethyl] phosphate)及EOBDA壓克力單體混合後,製備出奈米複合材料,當二氧化鈦含量達7.9 wt%時,折射率由1.5443上升到1.5553,上升幅度並不明顯。這是由於二氧化鈦奈米粒子表面的油酸含量很高,以致於折射率上升的幅度受限。 在最後一個部分中,以醋酸表面改質之銳鈦型二氧化鈦奈米複合材料與BMAEP壓克力單體混合後,製備出奈米複合材料。當銳鈦型二氧化鈦固含量達35.4 wt%後,折射率即由1.5020上升至1.6071。此外,在波長為850 nm、1310 nm與1550 nm下的光穿透度分別為87.4 %、94.3 %及94.0 % 。Due to the wide application of high refractive index materials (e.g. optical waveguide and optical lenses, etc.), we synthesized high refractive index materials. In order to reach the goal of high refractive index (RI) 1.6 at 633 nm, we tried to synthesize four kinds of nanocomposites. First, we prepared silica-polymer nanocomposites. By changing the silica content, we can realize how the silica content influences the RI. However, we found that the RI decreased when the silica content increased. It is because the RI of silica is lower than that of the polymer matrix. In spite of the fact that we can’t reach the goal by this method, we found an interesting phenomenon after analyzing the mechanical and thermal properties of the nanocomposites. We found that both of the mechanical and thermal properties increased nonlinearly when the silica content reached 40 wt%. In order to explain this nonlinear phenomenon, we used atomic force microscopy (AFM) to obtain the surface morphology of nanocomposites and tried to find the correlation between their physical properties and surface morphology. We found that the silica nanoparticles in the polymer matrix became self assembled when the silica content reached 40wt%. The network formation of the silica nanoparticles confines the moving of polymer and causes the increasing of their physical properties nonlinearly. Accord to these results, we made the conclusion that the percolation threshold of this hybrid system is 40 wt% of the silica content. In addition, we used AFM with the thermal accessory to find in-situ nanocomposites surface morphology and then used image processing software to know specifically the temperature influence on its topography. Thus we obtained the nano scale Tg and made comparison with the macro scale Tg, which was obtained from DSC and TMA. From the results, we found that both DSC and TMA can’t find their Tg when the silica content reaches 40%. However, we can still find that it is increasing by AFM. It is because the AFM probe is much smaller than TMA probe, so we can still find their Tg. In part two, we synthesized an amorphous TiO2 nanoparticle colloid solution and mixed it with EOBDA (ethoxylated (3) bisphenol A diacrylate) monomers after surface modification of TiO2 nanoparticles by the coupling agent (3-(trimethoxysilyl) propyl methacrylate, MPS), then we used the resulting materials that were the product of the above stated reactions to fabricate nanocomposites. We found that RI increased from 1.5648 (EOBDA) to 1.6161 after adding 15.6 wt% of titania and the transparency in the wavelength of 850 nm, 1310 nm and 1550 nm were above 93%. In part three, we synthesized of oleic acid-capped anatase TiO2 nanocrystals, then mixed them with BMAEP (Bis[2-(methacryloyloxy) ethyl] phosphate) and EOBDA monomers to fabricate nanocomposites. We found that RI increased from 1.5443 (BMAEP/EOBDA mixing) to 1.5553 after adding 7.9 wt% of titania. It is clear that the range of RI increasing is not as high as it in part two. It is because there is too much surfactant around titania to increase the RI using pure TiO2. Finally, we used carboxylic acid-capped anatase TiO2 nanocrystals, and mixed them with BMAEP to fabricate nanocomposites. We found that RI increased from 1.5020 (BMAEP) to 1.6071 after adding 35.4 wt% of titania and the transparency in the wavelength of 850 nm, 1310 nm and 1550 nm to be 87.4 %, 94.3 % and 94.0%, respectively.摘要 I Abstract IV 目錄 VII 圖目錄 XII 表目錄 XV 第一章 引言 1 第二章 文獻回顧 6 2.1高分子複合材料 6 2.1.1 填料 7 2.1.2高折射率奈米複合材料之應用 9 2.1.3界面對於材料物性之影響 11 2.1.4機械性質 14 2.1.5玻璃轉移溫度 15 2.1.6 Percolation 效應 16 2.2原子力顯微鏡 18 2.3小角度X光散射儀(SAXS) 21 2.4溶膠凝膠法 23 2.4.1影響矽酸鹽類進行溶膠凝膠法之變因 25 2.4.2溶膠凝膠法中有機相與無機相之間不同鍵結方式比較 26 2.4.2.1有機相與無機相間無化學鍵結 27 2.4.2.2有機與無機相間以物理作用力結合 27 2.4.2.3有機相與無機相間無化學鍵結 28 2.4.3以溶膠凝膠法製備奈米複合材料之主要結構 29 2.4.3.1高分子矽氧烷修飾結構 29 2.4.3.2半混合式高分子互穿網狀結構 30 2.4.3.3互穿網路結構 31 2.5以溶膠凝膠法製備二氧化鈦奈米粒子 33 2.5.1金屬烷氧化物(metal alkoxides) 34 2.5.2影響鈦烷氧化物進行溶膠凝膠法反應之因子 35 2.5.3鈦烷氧化物之表面改質 37 第三章 實驗 42 3.1 實驗藥品 42 3.2 實驗儀器 45 3.3實驗步驟 47 3.3.1實驗流程圖 47 3.3.1.1二氧化矽-高分子奈米複合材料 47 3.3.1.2非晶型二氧化鈦奈米複合材料 48 3.3.1.3以油酸表面改質之銳鈦型二氧化鈦奈米複合材料 49 3.3.1.4以醋酸進行表面改質之銳鈦型二氧化鈦奈米複合材料 50 3.3.2含二氧化矽-高分子奈米複合材料 51 3.3.2.1二氧化矽-高分子奈米複合材料之製備 51 3.3.3非晶型二氧化鈦奈米複合材料 52 3.3.3.1非晶型二氧化鈦奈米粉體之合成 52 3.3.3.2非晶型二氧化鈦-高分子奈米複合材料製備 54 3.3.4以油酸表面改質之銳鈦型二氧化鈦奈米複合材料 54 3.3.4.1以油酸表面改質之銳鈦型二氧化鈦奈米粉體之合成 54 3.3.4.2以油酸表面改質之銳鈦型二氧化鈦奈米複合材料製備 56 3.3.5以醋酸進行表面改質之銳鈦型二氧化鈦奈米複合材料 57 3.3.5.1以醋酸表面改質之銳鈦型二氧化鈦奈米粉體之合成 57 3.3.5.2以醋酸表面改質之銳鈦型二氧化鈦奈米複合材料製備 59 3.4實驗測試項目與樣品製備 60 3.4.1光學性質分析 60 3.4.2熱性質分析 60 3.4.3機械性質分析 62 第四章 結果與討論 63 4.1二氧化矽-高分子奈米複合材料性質分析 63 4.1.1折射率 (Refractive Index) 63 4.1.2機械性質分析 64 4.1.3熱性質分析 66 4.1.4表面型態分析 68 4.1.5二氧化矽奈米複合材料之表面玻璃轉移溫度分析 71 4.2二氧化鈦奈米複合材料性質分析 75 4.2.1非晶型二氧化鈦奈米複合材料性質分析 75 4.2.1.1折射率(Refractive Index) 75 4.2.1.2光穿透度(Transparency) 78 4.2.1.3熱裂解溫度(Td) 82 4.2.1.4玻璃轉移溫度(Tg) 83 4.2.2以油酸表面改質之銳鈦型二氧化鈦奈米複合材料性質分析84 4.2.2.1以油酸表面改質之銳鈦型二氧化鈦粒子的熱重分析 85 4.2.2.2折射率(Refractive Index) 86 4.2.2.3光穿透度(Transparency) 89 4.2.2.4熱裂解溫度 (Td) 91 4.2.3以醋酸表面改質之銳鈦型二氧化鈦奈米複合材料性質分析92 4.2.3.1折射率(Refractive Index) 92 4.2.3.2光穿透度(Transparency) 94 4.2.3.3熱裂解溫度 (Td) 95 4.2.3.4玻璃轉移溫度(Tg) 96 第五章 結論 98 第六章 建議 101 參考文獻 102 圖 目 錄 Figure 1.1 Filler fraction dependence for the conductivity of conductor–insulator composites 4 Figure 2.1 Schematic of nanoscale fillers 7 Figure 2.2 Schematics of (a) stress vs. strain curve for a typical high modulus fiber, a thermosetting polymer, and the resulting composites, (b) transfer of strain from the matrix to the fiber near the fiber end 13 Figure 2.3 (a) surface area per unit volume vs. particle size for spherical particles that are ideally dispersed, and (b) interparticle distance for spherical particles that are ideally dispersed 14 Figure 2.4 Site percolation on the square lattice, illustrating various cluster sizes (s) for three values of p, the fraction of filled sites 17 Figure 2.5 The atomic force diagram. Set points for the contact and noncontact modes are indicated with dotted lines 20 Figure 2.6 Polymerization behavior of aqueous silica 26 Figure 2.7 Alkoxysilane modified polymer structure 30 Figure 2.8 Semi-IPN structure 31 Figure 2.9 IPN structure 32 Figure 2.10 Molecular structure of Ti(OR)4 precursors 35 Figure 2.11 Hypothesized mechanism for isotropic growth nanocrystals in oleic Acid (-OPri= -CH(CH3)2 and R= OLEA Alkyl Chain) 38 Figure 3.1 Flow diagram of SiO2/ polymer nanocomposite 47 Figure 3.2 Flow diagram of amorphous TiO2/ polymer nanocomposite 48 Figure 3.3 Flow diagram of oleic acid-capped anatase TiO2/ polymer nanocomposite 49 Figure 3.4 Flow diagram of acetic acid-capped anatase TiO2 / polymer nanocomposite 50 Figure 3.5 TEM image of amorphous TiO2 nanoparticles 53 Figure 3.6 XRD patterns of amorphous TiO2 nanoparticles 53 Figure 3.7 TEM image of anatase TiO2 nanocrystals 55 Figure 3.8 Electron diffraction patterns of anatase TiO2 nanocrystal 56 Figure 3.9 Size distributions of anatase TiO2 colloid solution 58 Figure 3.10 XRD patterns of anatase TiO2 nanocrystals 59 Figure 4.1 Refractive index fitting curves of FS series at 633nm 64 Figure 4.2 Hardness of FS series 65 Figure 4.3 Modulus of FS series 65 Figure 4.4 TGA curves of FS series 66 Figure 4.5 TMA curves of FS series 67 Figure 4.6 DSC curves of FS series 67 Figure 4.7 AFM images of FS series 70 Figure 4.8 small angle X-ray scattering (SAXS) spectrum of FS series 71 Figure 4.9 Comparison of TMA and AFM Probe 72 Figure 4.10–(a) Thermal evolution of the area fraction of FS-0 73 Figure 4.10–(b) Thermal evolution of the area fraction of FS-20 73 Figure 4.10–(c) Thermal evolution of the area fraction of FS-40 74 Figure 4.10–(d) Thermal evolution of the area fraction of FS-60 74 Figure 4.11 Refractive index of TA series at 633nm 78 Figure 4.12 UV-vis spectrum of TA series 80 Figure 4.13 Transparency of TA Series in the Wavelength of 850 nm, 1310nm and 1550 nm 80 Figure 4.14 TGA curves of TA series 83 Figure 4.15 DSC curves of TA series 84 Figure 4.16 TGA curves of OLEA-capped TiO2 nanocrystals with different washing times 86 Figure 4.17 Refractive index of TB series at 633nm 89 Figure 4.18 UV-vis spectrum of TB series 90 Figure 4.19 Transparency of TB series in the wavelength of 850 nm, 1310nm and 1550 nm 91 Figure 4.20 TGA curves of TB series 92 Figure 4.21 UV-vis spectrum of TC series 95 Figure 4.22 TGA curves of TC series 96 Figure 4.23 DSC curves of TC series 97 表 目 錄 Table 1.1 Comparisons of optical materials 2 Table 4.1 Chemical compositions of FS series 63 Table 4.2 Tg comparison of FS series (DSC and TMA) 68 Table 4.3 Tg comparison of FS series (DSC, TMA and AFM) 75 Table 4.4 Refractive index list of bulk materials used in TA series 77 Table 4.5 Comparison of theoretical and experimental inorganic content of TA Series 77 Table 4.6 NIR absorption for CH and OH bonding 81 Table 4.7 Refractive index list of bulk materials used in TB series 88 Table 4.8 Comparison of theoretical and experimental refractive index of TB Series 88 Table 4.9 Comparison of theoretical and experimental refractive index of TC Series 941732294 bytesapplication/pdfen-US折射率有機/無機奈米複合材料溶膠-凝膠法原子力顯微鏡表面型態玻璃轉移溫度二氧化鈦二氧化矽refractive indexorganic/inorganic nanocompositessol-gelAFMsurface morphologyglass transition temperaturetitanium dioxidesilica dioxide以表面改質及分散技術製備高折射率有機/無機奈米複合材料Fabrication of High Refractive Index Organic/Inorganic Nanocomposite via Surface Modification and Dispersion Techniquethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/55230/1/ntu-95-R93527009-1.pdf