電機資訊學院: 電信工程學研究所指導教授: 王暉葉光聖Yeh, Kuang-ShengKuang-ShengYeh2017-03-062018-07-052017-03-062018-07-052016http://ntur.lib.ntu.edu.tw//handle/246246/276575本論文的研究主題為無開關雙向放大器與其在雙向波束成型系統的應用。論文首先說明雙向傳輸系統在通訊系統中的優勢,在雙向傳輸系統中,最關鍵的元件為雙向放大器。傳統的雙向放大器需要使用兩個單獨的放大器與開關來實現,然而多餘的開關會造成額外的損耗與占用面積。本論文提出兩個使用無開關架構的雙向放大器與一個雙向波束成型器晶片,藉由無開關與雙向的設計,降低訊號的損耗與晶片面積。 第一個雙向放大器實現在90奈米金氧半場效電晶體製程。在應用頻帶57-66 GHz內,接收模式的增益大於18.2 dB,雜訊指數小於8 dB,直流功耗為15.3 mW。在發射模式下,線性增益大於13.5 dB,直流功耗為46 mW。在60 GHz時,1 dB增益壓縮時的輸出功率為3.6 dBm,飽和輸出功率為6.5 dBm,最大附加功率效率為7.3%。整體電路佈局面積為0.44平方毫米。第二個雙向放大器實現在40奈米金氧半場效電晶體低功耗製程。在應用頻帶52-62 GHz內,接收模式的小訊號增益大於10.1 dB,雜訊指數小於8 dB,直流功耗為22.3 mW。在發射模式下,線性增益大於13.4 dB,直流功耗為49.5 mW。在55 GHz時,1 dB增益壓縮時的輸出功率為2.7 dBm,飽和輸出功率為9.7 dBm,最大附加功率效率為8.5%。整體電路佈局面積為0.21平方毫米。比起第一個雙向放大器,此電路使用差動架構降低了對旁路電容的面積需求,與使用變壓器實現了小面積的匹配網路,晶片面積可以更進一步地縮小。此外,因使用差動放大器與變壓器功率結合,輸出的功率與附加功率效率也能進一步地提升。比起已發表的文獻,本論文提出的兩個無開關雙向放大器為首次使用矽基製程實現在60 GHz的應用。其中40奈米版本的雙向放大器更具有最小的晶片面積。 藉由使用40奈米的雙向放大器,我們實現了一個可應用在手持裝置的雙向傳輸波束成型器晶片。藉由與四個獨立的四單元天線陣列搭配,此晶片可將收發機的訊號傳送至(接收從)選定的16個波束方向,以達到全向收發的功能。藉由雙向架構,此晶片上的所有被動元件與輸入輸出埠在傳送與接收模式皆可共用。此外,也因為40奈米版本的雙向放大器有相當小的晶片面積,此控制晶片可以縮小到2.9平方毫米。此晶片使用金氧半場效電晶體製程,避免了異質晶片的整合;而縮小化的電路面積能有效改善在大數量相位陣列中,過大的輸入輸出連接數造成封裝的困難。The research topics of this thesis are switchless bidirectional amplifier (BDA) and its application in the bidirectional beamforming system. First, the advantages of bidirectional system in the communication are illustrated. In the bidirectional system, the most critical component is the BDA. Conventional BDAs are realized by two unidirectional amplifiers with switches. However, the switches produce extra loss and occupy large chip area. This thesis presents two switchless BDAs and a beamformer which built by the BDAs. By using the switchless topology, the loss and the chip size are minimized. The first BDA is realized in 90-nm CMOS process. From 57 to 66 GHz, in receiving mode, the gain is above 18.2 dB and the noise figure is below 8 dB, with 15.3 mW power consumption. In transmitting mode, the linear gain is above 13.5 dB with 46 mW power consumption. At 60 GHz, output 1 dB compression point (OP1dB) is 3.6 dBm, saturation output power (Psat) is 6.5 dBm with peak PAE of 7.3%. The chip size is 0.44 mm square. The second BDA is realized in 40-nm low power CMOS process, with the transformer-coupled matching network and neutralization technique. From 52 to 62 GHz, in receiving mode, the gain is above 10.1 dB and the noise figure (NF) is below 8 dB, with 22.3 mW power consumption. In transmitting mode, the linear gain is above 13.4 dB, with 49.5 mW power consumption. At 55 GHz, the output 1 dB compression point (OP1dB) is 2.7 dBm, saturation output power (Psat) is 9.7 dBm with peak PAE of 8.5%. The chip size is 0.21 mm square. Comparing with the first BDA, the chip size is reduced due to elimination of bypass capacitors in differential topology, and compact transformers as the matching networks. In addition, the output power and PAE are enhanced by using the differential power combining. Comparing with published works, the two BDAs are the first switchless BDA realized on Si-based process for 60 GHz application, and the 40-nm BDA demonstrate the minimum chip size. By using the 40-nm BDA, a bidirectional beamformer which applied in the high speed communication of the mobile devices is designed. Incorporated with four separated 4-element (4×4) antenna arrays, the beamformer supports 16-beam directions. By using the bidirectional architecture, all the passive components and I/O are shared in the transmitting and the receiving paths to minimize the chip size. Moreover, due to the compact size of the BDAs, the system chip is compact as 2.9 mm square. With the CMOS process and the minimized circuit size in the large-scale phased array, the reliability issue in high I/O connected package and heterogeneous integration can be solved.24452391 bytesapplication/pdf論文公開時間: 2019/8/26論文使用權限: 同意無償授權雙向放大器雙向收發機相位陣列波束成型金氧半場效電晶體60 GHzbidirectional amplifierbidirectional transceiverbeamformingphased arrayCMOS應用於60 GHz之雙向傳輸波束成型器與無開關雙向放大器之設計Design of 60 GHz Bidirectional Beamformer and Switchless Bidirectional Amplifierthesis10.6342/NTU201603106http://ntur.lib.ntu.edu.tw/bitstream/246246/276575/1/ntu-105-R00942125-1.pdf