管傑雄臺灣大學:電子工程學研究所邱建維Chiu, Chien-WeiChien-WeiChiu2007-11-272018-07-102007-11-272018-07-102006http://ntur.lib.ntu.edu.tw//handle/246246/57658矽鍺光電元件因具有與矽積體電路整合的優點,加上異質接面結構長晶技術的進步,故近年來矽鍺異質接面的光電元件被廣為研究。在本論文中提出一個新的方法來增強矽發光的強度,且在實驗以及模擬上都獲得了驗證。除了實驗之外,亦利用TCAD模擬軟體探討元件內部的物理特性,並藉由與實驗數據的比較,增加模擬的可靠性,如此可獲知一些在實際實驗上難以量測的資訊,並且建立更加可靠的物理模型。 在本篇論文中利用SILVACO這間公司所發展的元件模擬軟體ATLAS進行模擬,在實驗上,則是利用超高真空化學氣相沈積,磊晶成長一具有十個週期的矽/矽鍺多重量子井之發光二極體,經過製程與量測之後可得到元件的電流電壓特性以及電激發光頻譜,再利用ATLAS進行樣品的模擬,以便探討其中的物理現象。從實驗的數據得知,在室溫下,樣品的矽發光強度隨著注入電流的增加而有顯著的增強;因為多重量子井以及矽的緩衝層之間存在著異質接面,從模擬的結果發現,當電洞累積在量子井中的數量夠多時,此異質接面會形成一個電洞的能障以阻擋電洞繼續進入量子井中,因此在高注入電流時,有大量電洞會累積在上層矽緩衝層,使得電子電洞對在此層複合的機率大增,同時也增加了矽的發光強度。The advantage of the optoelectronic component of Silicon Germanium is fully compatible with the Si-based microelectronic chips. In addition, the progress of the growth techniques for quantum hetero-junction structure is in advanced. So the hetero-junction structure of Silicon Germanium is studied far and wide in recent years. In this thesis, a method with band bending effect to enhance silicon light emission was proved successfully by real fabricated devices and theoretical simulation results. Within simulation, we could know detail physical phenomenon which could not be observed in the lab easily. By comparing the simulation result and experiment data, we could improve our simulation accuracy and simulation result would help us to build a reliable physical model. We used TCAD simulator named ATLAS which was developed by SILVACO. For experiment, we designed a LED with ten periods Si/SiGe MQW and grew it by UHVCVD system. After processing, we could get I-V data and EL spectrum. We utilized ATLAS to simulate this device and ATLAS let us to know insight physics. From the experiment data, Silicon light intensity increased as injection current is increased at room temperature. By simulation, we found that there is a hetero-junction between Silicon buffer layer and Si/SiGe MQW structure. As injection current is increased; a barrier was formed at the hetero-junction because of band bending effect. This barrier would block hole to flow into wells and then a lot of hole would be accumulated at the top Silicon buffer layer. Thus recombination rate at this layer would increase and Silicon light intensity would increase simultaneously.第一章 8 簡介 8 References 11 第二章 12 Si/SiGe量子結構的基本理論以及使用TCAD模擬軟體的好處 12 2.1 Si1-xGex 特性 12 2.1.1 Si1-xGex 形變層 12 2.1.2 Si/SiGe異質結構的能帶結構以及能帶排列 14 2.1.3 Si/SiGe多重量子井結構與疊晶格結構 18 2.1.4 在Si/SiGe多重量子井結構中的能帶彎曲效應 18 2.2 發光二極體的基本操作原理 19 2.2.1 電激發光 19 2.2.2 發光二極體(Light Emitting Diode) 20 2.3 使用TCAD模擬軟體的好處 22 References 23 第三章 24 理論模型與實驗架構 24 3.1 模擬的理論方程式 24 3.2 模擬材料的參數 26 3.3 實驗的製程以及量測 26 References 29 第四章 30 具有10層多重量子井(MQW)結構之發光二極體的理論分析 30 4.1 樣品的準備 30 4.2 電流-電壓的特性 32 4.3 室溫下電激發光頻譜 32 4.4 能帶彎曲效應的影響 34 4.6 不同的capping layer對發光峰值位置的影響 38 Reference 42 第五章 43 結論及未來展望 431758959 bytesapplication/pdfen-US增加矽的發光強度矽鍺多重量子井之發光二極體Enhancement of Silicon Light EmissionSi/SiGe MQW structure藉由矽鍺量子井結構增強矽發光強度Enhancement of Silicon Light Emission with Si/SiGe Quantum Well Structurethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/57658/1/ntu-95-R92943131-1.pdf