2008-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/691744摘要:微流體生物晶片常應用於生物醫學檢測或分析,主要原因是此類晶片具有減少樣品溶液用量、減少人工操作的步驟、提升檢測工具之可攜性與縮短分析時間等優點。若能研發出低成本、高效率的晶片,而且其製程又能用來大量生產的話,將可成為未來生醫檢測或分析的主要工具。在醫療使用上,為避免二次使用造成污染的問題,更確定需要開發出新型的便宜且可拋棄式的微流體晶片。針對聚合&#37238;鏈鎖反應(PCR)元件,本研究計畫將針對黏結溫度最佳化的需求,來設計並製作可產生溫度梯度的元件,並且能夠精確監控腔體溫度,使DNA擴增達到最佳效果。元件主要分為三個部份:PDMS層、玻璃層及電路板層。PDMS層包含數個可獨立進行PCR反應的流道,每組流道可以設定不同的黏結溫度參數,滿足最佳化黏結溫度的需求;玻璃層鍍上金屬薄膜,構成溫度循環所需之加熱器與溫度感測器;電路板則是整個系統的控制中樞,微處理器與驅動電路都置於此層。此設計概念可以大幅降低PCR所需之耗材成本,元件也可達到微流體生物晶片的許多優點,將對於需要最佳化黏結溫度和快速PCR的研究有極大的幫助。本研究計畫將製作數種不同規格之長形磁鐵電磁式微蠕動幫浦,並整合於聚合&#37238;鏈鎖反應(PCR)元件中。電磁式微蠕動幫浦利用驅動薄膜往復運動,改變流道區域腔體之體積,造成前後之壓力差,同時藉由循序控制驅動薄膜結構,推擠流道中的液體往特定方向流動,並針對其特性作量測與分析,利用其數據,做出效率更高且面積更小的幫浦。 <br> Abstract: Microfluidic biochips have many advantages over traditional bio-analysis tools. For example, biochips usually require less sample amount, fewer human operation steps, and shorter operation time. Also, these chips are usually portable or disposable. In this research, we will design a novel polymerase chain reaction (PCR) biochip which can provide fast optimization of the annealing temperature for high-throughput analysis. For PCR process, the annealing temperatures for different specimens are usually quite different. Although some software can approximate the annealing temperature, optimal annealing temperature for each specific case usually will be determined by experiment. On the proposed biochip, many independent microchannels, which have different annealing temperature zones, can perform many PCR processes in parallel. Therefore, the optimized annealing temperature can be extracted efficiently. Using the built-in heaters and temperature sensors, the temperatures on different zones of the chip can be precisely controlled. The proposed bio-chip is composed of a PDMS layer, a print-circuit-board (PCB) layer, and a glass substrate. Microfluidic channels and reaction chambers will be fabricated on the PDMS layer. Electromagnetic actuators will be built on the PCB layer which will be used to drive the fluids between different temperature zones. Micromachined heaters and temperature sensors will be realized by patterning the metal film deposited on the glass substrate. The circuit for controlling the temperatures in different zones of the chip will be developed. In addition, we will design and manufacture peristaltic micro-pumps which will be integrated into the PCR system. The single-chamber micropump drives fluid by the peristaltic motion of the membrane on the top of the pump chamber. For the manufacturing process, SU-8 photoresist will be spin-coated on a glass substrate and patterned. Then it will be used as the mold for fabricating the PDMS layer. Small pieces of magnets will also be employed as the key component of the actuators of the proposed micropumps.生物晶片微流體聚合&#37238鏈鎖反應電磁式微蠕動幫浦BiochipmicrofluidicsPCRelectromagnetic pump優化黏結溫度之微型PCR晶片系統