指導教授:周俊廷臺灣大學:電信工程學研究所盧奕吾Lu, I-WuI-WuLu2014-11-302018-07-052014-11-302018-07-052014http://ntur.lib.ntu.edu.tw//handle/246246/264355M2M communication is an enabling solution for many applications, including industrial control and smart buildings. Take the temperature monitoring system for machinery in a factory as an example. The temperature sensors send back the readings to a central controller. The controller will shut down the system if the readings are over a predefined threshold. In smart buildings, lighting control systems consist of different sensors such as light sensors and motion sensors. These sensors detect the behaviors of human beings and turn on/off the lights accordingly. A common problem among the above applications is that many machines, especially the sensors, are usually battery-powered. Therefore, they have extremely limited energy budget. Given that it is also very inconvenient to replace or recharge the battery, how to maintain an M2M network in an energy-saving manner becomes a critical issue in the design of M2M networks. Turning the radio off whenever possible (i.e., duty cycling the machines) is one of the most common methods for energy management. Duty-cycle control, however, results in a longer latency of message dissemination. Although longer latency is not a serious problem for non-time critical messages such as regular temperature readings, it will lead to devastating results for time-critical messages such as fire alarms. Most of the existing researches focused on minimizing the latency of non-time critical messages or time-critical messages seperatedly. A joint design to make tradeoff between the latency of these two types of messages is still missing. In this thesis, a set of specially designed sequences that control the duty cycle of machines is developed to make a better tradeoff. Our simulation results show that the end-to-end latency of time-critical messages is shortened by 13% to 42% depending on the duty cycle, while that of non-time critical message is only increased by less than 7%. The proposed solution is also implemented in an IEEE 802.15.4 network. The result shows that our sequences can prolong the lifetime of machines by 22% to 333% and reduce the end-to-end delay by 26%.ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1 1.1 An introduction to the low duty-cycle M2M network . . . . . . . . . 1 1.2 Problems in low duty-cycle networks . . . . . . . . . . . . . . . . . . 3 1.3 Asynchronous approaches . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 The tradeoff between minimizing the latency of non-time crit- ical messages and time-critical messages . . . . . . . . . . . . 7 1.4 The ob jective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . 10 2.1 Probabilistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Deterministic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 CHAPTER 3 SYSTEM SETTINGS AND ASSUMPTIONS . . . . 16 3.1 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Node behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Message transmitted in this network . . . . . . . . . . . . . . . . . . 17 CHAPTER 4 THE PROPOSED SEQUENCE DESIGN . . . . . . . 18 4.1 Basic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Proposed sequence design . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.1 Where to start . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.2 Where to end . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 The generalization of alignment of slot boundaries . . . . . . . . . . 24 CHAPTER 5 SIMULATION RESULTS . . . . . . . . . . . . . . . . . 27 5.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Simulation results and performance evaluation . . . . . . . . . . . . 29 5.2.1 Topology 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2.2 Topology 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 CHAPTER 6 TEST BED . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1 End nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.1.1 The packet format of hello messages . . . . . . . . . . . . . . 37 6.2 Sniffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 The Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.4 Evaluation of the end-to-end delay . . . . . . . . . . . . . . . . . . . 41 6.5 Evaluation of the power saving performance . . . . . . . . . . . . . . 42 CHAPTER 7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . 449828709 bytesapplication/pdf論文公開時間:2014/09/03論文使用權限:同意有償授權(權利金給回饋學校)節電機器對機器網路非同步時間嚴格的訊息傳輸低工作週期機器對機器網路中時間嚴格之信息傳輸Transmission of Time-critical Messages in Low Duty-cycle Machine-to-machine networksthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/264355/1/ntu-103-R01942113-1.pdf