Wang C.-J.Lin K.H.-Y.HSIN-HSI CHEN2019-07-102019-07-1020109781605588964https://scholars.lib.ntu.edu.tw/handle/123456789/413161Identifying intent boundary in search query logs is important for learning users' behaviors and applying their experiences. Time-based, query-based, and cluster-based approaches are proposed. Experiments show that the integration of intent clusters and dynamic time model performs the best. ? 2010 ACM.Intent boundary detectionIntent clusteringQuery log analysisIntent boundary detection in search query logsconference paper10.1145/1835449.18355972-s2.0-77956035581https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956035581&doi=10.1145%2f1835449.1835597&partnerID=40&md5=b2eef62dd261d6be4bfe285c3309256a