Sharma, AbhinavAbhinavSharmaZheng, YingganYingganZhengEzekowitz, Justin AJustin AEzekowitzWesterhout, Cynthia MCynthia MWesterhoutUdell, Jacob AJacob AUdellGoodman, Shaun GShaun GGoodmanArmstrong, Paul WPaul WArmstrongBuse, John BJohn BBuseGreen, Jennifer BJennifer BGreenJosse, Robert GRobert GJosseKaufman, Keith DKeith DKaufmanMcGuire, Darren KDarren KMcGuireAmbrosio, GiuseppeGiuseppeAmbrosioLEE-MING CHUANGLopes, Renato DRenato DLopesPeterson, Eric DEric DPetersonHolman, Rury RRury RHolman2022-06-212022-06-2120220149-5992https://scholars.lib.ntu.edu.tw/handle/123456789/613149Phenotypic heterogeneity among patients with type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease (ASCVD) is ill defined. We used cluster analysis machine-learning algorithms to identify phenotypes among trial participants with T2DM and ASCVD.enHEART-FAILURE; NETWORK ANALYSIS; RISK SCORE; OUTCOMES; MELLITUS; SITAGLIPTIN; HOSPITALIZATION; IMPACT[SDGs]SDG3Cluster Analysis of Cardiovascular Phenotypes in Patients With Type 2 Diabetes and Established Atherosclerotic Cardiovascular Disease: A Potential Approach to Precision Medicinejournal article10.2337/dc20-2806347162142-s2.0-85123279693WOS:000797976500036https://scholars.lib.ntu.edu.tw/handle/123456789/594315