王 倫Wang, Lon臺灣大學:光電工程學研究所萬孟勳Wan, Meng-HsunMeng-HsunWan2010-07-012018-07-052010-07-012018-07-052009U0001-1108200915360000http://ntur.lib.ntu.edu.tw//handle/246246/188385當半導體元件愈來愈小,傳輸的速度愈來愈快,微小化的光通訊系統及光電基板可望成為未來發展的方向之一。我們實驗室以改良的微小化抽絲塔,在可控制的條件之下成功製作出數十微米至數百奈米等級的微奈米導光線。因應抽絲塔的製程需求,我們開發出一套即時直徑量測系統,用來即時檢測並對製程系統做調整。量測方法使用雷射側向入射、觀測散射條紋的方式,並對此量測方法的精確度做了驗證。此外,為了確認製造出的微奈米導光線之導光性質,有必要了解其纖核及纖殼的變化狀態。我們使用一個基於定量相位顯微術的方法,藉由觀察光纖側面亮場成像之方式,檢測光纖的截面折射率分布。基於此方法,可以了解光纖的性質,也對各種不同種類的光纖分別做了檢測及分析。With semiconductor devices become smaller and the transmission speed becomes faster, minimized optical transmission system and the optical integrated circuit are the candidates for future application and development. We utilized a modified-miniature fiber drawing tower to fabricate micro-nano optical wires (MNOWs) from few tens of micrometers down to few hundreds of nanometers scale under controllable conditions. For the necessity of the fiber drawing fabrication process, we develop a real-time diameter measurement system for in situ detecting and adjusting the fabrication parameters. The method is to pass a laser beam through a fiber and characterize its scattering pattern from which the diameter of the fiber is determined. The verification of accuracy and precision was also done. Furthermore, to confirm the light propagation property of the fabricated MNOWs, it is necessary to examine the variation of core and cladding. We utilized a method based on quantitative phase microscopy (QPM), which observe the bright field images of side view of a fiber to measure the refractive index profile along the cross section. From this approach, we can examine the fiber property, and measurements to a few kinds of fibers were done and analyzed.摘要 Ibstract IItatement of Contributions IIIontents IVist of Figures VIIist of Abbreviations XIIIhapter 1 Introduction 1-1 Motivation 1-2 Organization of the Thesis 4hapter 2 Fabrication of MNOW 5-1 Experimental Setup 5-2 Modified Multi-Stage Process for MNOW Fabrication 9hapter 3 Fiber Diameter Measurement 13-1 Overview 13-2 Principle 15-3 Experimental Setup and Measurement Scheme 21-4 Measurement Results and Discussion 31-4-1 Comparison Between Experimental and Simulation Results 31-4-2 Confirmation of the Measurement Accuracy and Precision 34-4-3 Real-time Measurement Results during Fiber Drawing Process 42-4-4 Discussion of the Measurement Limit 50-5 Summary 52hapter 4 Fiber Refractive Index Profile Measurement 54-1 Overview 54-2 Principle 56-3 Experimental Setup 60-4 Results and Discussion 63-4-1 Single Mode Fiber 63-4-2 Multi-Mode Fiber 72-4-3 Photosensitive Fiber 75-4-4 Erbium-doped Fiber 78-4-5 Tapered Fiber 83-4-6 MNOW from the Drawing Process 88-5 Summary 98hapter 5 Conclusion and Future Work 99-1 Conclusion 99-2 Future Work 100eferences 101ublications 1092966873 bytesapplication/pdfen-US抽絲塔微奈米導光線直徑量測散射條紋法折射率分布量測定量相位顯微術drawing towermicro-nano optical wirediameter measurementscattering pattern methodrefractive index profilingquantitative phase microscopy即時光纖直徑量測技術及折射率分布量測技術應用於微奈米導光線製作Real-Time Fiber Diameter Measurement Technique and Refractive Index Profiles Measurement Technique Applied to Micro-Nano Optical Wires Fabricationthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/188385/1/ntu-98-R96941003-1.pdf