戴子安臺灣大學:化學工程學研究所吳育霖Wu, Yu-LinYu-LinWu2007-11-262018-06-282007-11-262018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/52218本研究成功的研製出條紋狀以及球狀排列的奈米金顆粒薄膜,利用團聯共聚合物可自我組裝成各種結構的特性,不僅可規則地排列,也可輕易的控制排列的間距,顆粒的大小,實驗材料亦由本實驗室所合成,包括PS-b-PMMA (polystyrene-b-polymethylmethacrylate)以及PS-b-P2VP (polystyrene-b-poly2-vinylpyridine),其中條紋狀金顆粒薄膜是利用PS-b-PMMA共聚合物本身自組裝的機制,控制比例使其產生一柱狀排列的微結構,並簡易地在任何一種基材上旋轉塗佈,加熱處理使其達到熱力學上平衡的狀態後,利用反應離子蝕刻技術(RIE)進而製作出具有序微結構之條紋狀高分子模板,使其裸露於空氣界面,再使用蒸鍍的方式將金選擇性地排列於PS相;球狀結構之金顆粒薄膜則是利用PS-b-P2VP在溶液狀態下所產生的微胞結構,並利用浸漬塗佈的方式,製作出一具六角狀堆積的球狀金鹽顆粒薄膜,此方法的關鍵是在還原的步驟,不同於一般文獻的還原方式,為使還原後的金顆粒仍具有大範圍的排列性,本研究先將薄膜製作,再利用聯胺蒸氣進行原位(in-situ)還原。 在結構鑑定部分,利用AFM可觀察到在條紋狀高分子模版上蒸鍍金前後的變化,利用TEM的量測,可觀察到在球狀結構的單層膜上進行聯胺蒸氣還原前後,金顆粒的產生與聚集的現象,亦觀察到隨著還原時間更長或是P2VP鏈段長度更長時,將會導致微胞之間金顆粒的聚集以及原本有序二維結構的破壞。在光學性質的量測部分,利用紫外/可見光光譜確實觀察到條紋狀結構的金顆粒吸收將隨著所蒸鍍的膜厚,而有增加的趨勢;球狀結構的薄膜在還原後亦有金顆粒表面電漿共振之吸收訊號,更直接地印證金顆粒的存在。The aim of this study was focusing on making a two-dimensional ordered structure with gold nanoparticles. Traditional top-down patterning methods like photolithography and e-beam lithography had shown to be time-consuming and expensive processes. In this study, a bottom-up method to fabricate an ordered nanodot with gold nanoparticles was proposed by using an amphiphilic block copolymer self-assembled into well-defined two/three dimensional structures. A stripe-like and a spherical nano-structure containing gold nanoparticles can be made by using block copolymer such as PS-PMMA and PS-P2VP that were also synthesized in our Lab. The fabrication process of stripe-like structure involved two steps. The first step involves spin coating the copolymer on a substrate, then thermal annealing it into ordered structure by self-assembly. The second step was to apply gold nanoparticles selectively on PS domain to form highly ordered gold nanoparticles array. The fabrication process of a spherical structure was made by PS-P2VP which formed micelles in toluene. The nanodot array of micelle monolayer containing gold salts was made by dip-coating. The block copolymer micelles containing gold salts were used as nanoscale reactors for the in-situ synthesis of gold by chemical treatment of the film sample with hydrazine vapor. A stripe-like and a spherical nanostructure containing gold nanoparticles were both observed either by AFM or by TEM. AFM was used successfully to evaluate the uniformity of stripe-like nanostructure coated on a silicon wafer before and after gold evaporation. TEM measurement of a spherical nanostructure showed that a monolayer of gold salts was reduced to one or a couple of gold nanoparticles inside the core volume of P2VP domain by nucleation and growth mechanism upon hydrazine vapor exposure. UV-vis spectrometer also show a characteristic surface plasmon absortion peak which demonstrate the effectiveness of the method in reducing gold salts.目錄 中文摘要……………………………………………………………………I 英文摘要…………………………………………………………………III 目錄………………………………………………………………………V 圖目錄……………………………………………………………………VII 第一章 前言………………………………………………………………1 第二章 文獻回顧…………………………………………………………3 2.1 高分子團聯共聚合物………………………………………3 2.1.1 高分子團聯共聚合物之相分離形態………………3 2.1.2 薄膜結構與塊材之差異……………………………4 2.1.3 高分子團聯共聚物微胞……………………………5 2.2 有機-無機混成材料…………………………………………5 2.3利用團聯共聚合物製備混成系統……………………………6 2.3.1聚環氧乙烷(poly ethylene oxide,PEO)…………6 2.3.2 聚丙烯酸(poly acrylic acid,PAA)………………7 2.3.3 聚乙烯啶(poly vinyl pridine)……………………7 2.3.4 團聯共聚合物與金之混成材料還原方式…………7 2.3.4.1 電子束(e-beam)還原法…………………8 2.3.4.2 UV光還原法………………………………8 2.3.4.3 電漿還原法………………………………9 2.3.4.4 化學還原劑還原…………………………9 2.4 團聯共聚合物製備混成系統之應用………………………10 第三章 實驗方法與試片製備……………………………………………17 3.1 實驗材料……………………………………………………17 3.2 實驗儀器…………………………………………………19 3.3 實驗方法……………………………………………………21 3.3.1 實驗流程……………………………………………21 3.3.2 矽晶片清洗…………………………………………22 3.3.3 條紋狀排列之奈米金顆粒薄膜製備………………22 3.3.4 球狀排列之奈米金顆粒薄膜製備…………………23 3.3.5 還原方法……………………………………………23 3.3.6 原子力顯微鏡………………………………………24 3.3.7穿透式電子顯微鏡…………………………………25 3.3.8 反應離子蝕刻機……………………………………25 3.3.9 真空蒸鍍機…………………………………………26 3.3.10 紫外/可見光光譜儀………………………………26 第四章 實驗結果與討論-條紋狀結構…………………………………31 4.1 高分子模板之結構鑑定……………………………………31 4.2 大面積規則排列之薄膜製作………………………………32 4.3 條紋狀排列金顆粒之結構鑑定……………………………33 4.4 條紋狀排列之金顆粒薄膜光譜……………………………33第五章 實驗結果與討論-球狀結構……………………………………44 5.1 球狀排列之金顆粒薄膜……………………………………44 5.2 金鹽微胞結構之鑑定………………………………………44 5.3 金鹽薄膜之原位(in-situ)還原…………………………45 5.4 不同溶劑下的比較…………………………………………46 5.5 球狀金顆粒薄膜之UV光譜…………………………………47 第六章 結論………………………………………………………………57 第七章 參考文獻…………………………………………………………59 圖目錄 圖2-1 高分子團聯共聚合物χN對鏈段體積分率fs之影響…………11 圖2-2 厚度效應所帶來薄膜巨觀上的影響……………………………12 圖2-3 團聯共聚合物溶液中,微胞與凝膠的形成與濃度之關係………12 圖2-4 利用PS-PEO團聯共聚合物:(a)微胞形成示意圖(b)以穿透式電 子顯微鏡觀察其量子點分布情形………………………………13 圖2-5 PS-PAA 團聯共聚合物之微胞結構(a);經氫氧化鈉水溶液處理, 微胞成破裂之型態(b)……………………………………………14 圖2-6 (a)假設高分子鏈與金屬鍵結機制,一共有四種,而(b)圖是以AFM觀察之結果,推測其機制為(a)圖中的d機制……………15 圖2-7 以氧氣電漿處理過後的金顆粒薄膜(a)PS(800)-P﹝2VP(HAuCl4)0.5(860)﹞(b)PS(325)-P﹝2VP(HAuCl4)0.5(75)﹞(c)PS(1700)-P﹝2VP(HAuCl4)0.1(450)﹞……………………16 圖3-1 實驗流程圖………………………………………………………21 圖3-2 條紋狀排列之金顆粒薄膜製作示意圖…………………………27 圖3-3 球狀微胞結構之形成與金鹽之鍵結……………………………27 圖3-4 球狀結構之金顆粒薄膜製作示意圖……………………………28 圖3-5 聯胺蒸氣還原……………………………………………………28 圖3-6 原子力顯微鏡之運作原理………………………………………29 圖3-7 針尖與試片之間距離與凡得瓦力之間的關係…………………29 圖3-8 原子力顯微鏡相圖之量測原理…………………………………30 圖4-1 加熱處理後的PS-PMMA薄膜側視示意圖………………………35 圖4-2 PS33KPMMA15K薄膜在蝕刻時間40s後,呈現一無序結構,此後膜厚 約為35nm…………………………………………………………35 圖4-3 PS33KPMMA15K薄膜在蝕刻時間20s後,移除PS層並將規則排列之 條紋狀結構裸露於空氣表面,此時膜厚約58nm………………36 圖4-4 PS33KPMMA15K之柱狀微結構3D圖……………………………………36 圖4-5 PS-PMMA薄膜受到表面能量的影響,導致膜厚趨向一穩定厚度 (n+0.5)L0…………………………………………………………37 圖4-6 (a)旋轉塗佈固定轉速為2500rpm,不同PS33KPMMA15K濃度下,所 測得膜厚與濃度之關係圖 (b)不同濃度下的膜厚以及所預期的巨觀結構…………………………………………………………38 圖4-7 不同薄膜厚度下,所造成薄膜表面高低起伏的變化:圖(a)(b)(c)分別為濃度2%、2.2%、2.4%的薄膜,隨厚度的不同將造成薄膜表面依序呈現凹洞、平坦、凸起之變化…………………………39 圖4-8 濃度2.6%的薄膜,依箭頭方向逐漸的縮小掃圖範圍:(a)OM 200X (b)AFM scan size 30μm (c)AFM scan size 5μm (d)AFM scan size 1μm…………………………………………………………40 圖4-9 濃度2.8%的薄膜,依箭頭方向逐漸的縮小掃圖範圍:(a)OM 200X (b)AFM scan size 30μm (c)AFM scan size 5μm (d)AFM scan size 1μm…………………………………………………………41 圖4-10 高分子模板在蒸鍍金前的高低圖(a)與蒸鍍後的高低圖(b) 42 圖4-11 條紋狀金顆粒薄膜在不同蒸鍍厚度下的UV光譜……………43 圖5-1 PS81P2VP14 (L=0.3)之金鹽微胞薄膜-Scan size:1μm…………48 圖5-2 PS81P2VP14 (L=0.3)之金鹽微胞薄膜-Scan size:3μm…………48 圖5-3 PS57P2VP57 (L=0.3)之金鹽微胞薄膜-Scan size:1μm………49 圖5-4 PS57P2VP57 (L=0.3)之金鹽微胞薄膜-Scan size:3μm………49 圖5-5 PS81P2VP14 (L=1)之金鹽微胞薄膜-Scan size:1μm……………50 圖5-6 PS57P2VP57 (L=1)之金鹽微胞薄膜-Scan size:1μm……………50 圖5-7 PS29P2VP9 (L=0.5)在溶液下以硼氫化鈉還原再成膜……………51 圖5-8 PS29P2VP9 (L=0.5)在溶液下以聯胺還原再成膜…………………51 圖5-9 TEM放大倍率10萬倍:PS81P2VP14 (L=0.3)之薄膜以聯胺蒸氣還原 一分鐘 (a)還原前(b)還原後……………………………………52 圖5-10 TEM放大倍率10萬倍:PS57P2VP57 (L=0.3)之薄膜以聯胺蒸氣還 原一分鐘 (a)還原前(b)還原後………………………………53 圖5-11 TEM 放大倍率20萬倍:PS81P2VP14 (L=0.3)之薄膜以聯胺蒸氣在 不同時間下的情形 (a)一分鐘(b)五分鐘(c)20分鐘…………54 圖5-12 PS29P2VP9 (L=0.5)之THF溶液,所形成之金鹽微胞薄膜,Scan size分別為(a)2μm(b)5μm…………………………………55 圖5-13 利用聯胺蒸氣還原之厚膜UV光譜……………………………56 表目錄 表3-1 實驗所使用的共聚合物…………………………………………30en-US團聯共聚合物反應離子蝕刻微胞原位還原表面電將共振amphiphilic block copolymerps-b-pmmaps-b-p2vp,self-assemblymicellein-situnucleatoin and growth mechanismnanodotsurface plasmon利用自組裝之團連共聚合物製作有序排列之奈米金顆粒薄膜Fabrication of two-dimensional ordered structure of self-assembled block copolymer containing gold nanoparticlesthesis