李源弘臺灣大學:材料科學與工程學研究所林傳宗Lin, Chuan-ZongChuan-ZongLin2007-11-262018-06-282007-11-262018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/55214質子交換膜燃料電池是一種乾淨的能源,而其中又以觸媒層及交換膜為發展重點,一般質子交換膜燃料電池使用的觸媒是鉑觸媒及鉑釕觸媒,其中觸媒皆是以碳黑為載體,碳黑是一種比表面積大而傳導性又不差的碳載體,目前研究指出,當燃料電池運作時,碳黑有可能因為腐蝕和氧化,使得吸附於其上的金屬觸媒顆粒產生凝聚,故在觸媒層的研究一般致力於改善顆粒凝聚、二元合金的抗毒化性質及載體的腐蝕性、傳導性。 本實驗主要以自製人工石墨粉來取代部分碳黑載體,因自製人工石墨粉中含有少量奈米碳管,希望可以利用奈米碳管及立體結構石墨,使得金屬觸媒顆粒達到分散效果和電化學效能的改進。使用X-Ray繞射儀及X-Ray光電子能譜儀分析所合成的觸媒顆粒是否為金屬顆粒;利用穿透式電子顯微鏡觀察觸媒顆粒的大小;最後使用電化學循環伏安法求得交換電流大小,以檢測觸媒效能。在碳黑載體中加入30 wt.%的自製人工石墨粉,雖然不能使得觸媒顆粒成長的更小,但是由交換電流的大小可以得知,在Pt/C及Pt-Ru/C兩組觸媒中,交換電流分別提高了9 %及19 %。 經由循環伏安法的結果可以得知,人工石墨粉中的奈米碳管及立體狀石墨有助於改善觸媒的效能。Proton exchange membrane fuel cell is a clean energy. After hydrogen oxidation and oxygen reduction, the final product is water. The catalysts and membrane play an important role in fuel cell system. The platinum and platinum- ruthenium was the most popular catalyst. And the support was usually carbon black. Carbon black had good conductivity and large specific surface area. The surface of carbon black is oxidized under the cathode environment of a PEFC. Thus, the platinum particles would be agglomerated. In this work, the DPG powders containing few CNTs(carbon nanotubes) and three dimension structure graphite were used as the support of catalyst in proton exchange membrane fuel cell. The CNTs(carbon nanotubes) and three dimension structure graphite might make the catalyst disperse well and the promotion of the electrochemical performance. TEM image of the Pt nanoparticles were obtained by using a JEM-2000FX operating at 200 kV. Exchange current was obtained by cyclic voltammetry method. Exchange current of catalyst supported on mixing powders containing 30 wt.% DPG are higher by 9% and 19%, respectively, than exchange current of catalyst supported on 100wt.% carbon black. The DPG powders containing few fullerenes and CNTs(carbon nanotubes) could be used as the support of catalyst in proton exchange membrane fuel cell.目錄 摘要 I Abstract III 第一章 緒論 1 1.1前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 質子交換膜燃料電池的簡介 3 2.2 觸媒的介紹 4 2.2.1 其他金屬觸媒 5 2.3 觸媒的合成法 11 2.4 觸媒活性分析- P. Stonehat比表面積公式[10] 13 2.5 Nafion簡介 15 2.6 載體的選擇 19 2.7 電化學循環伏安法分析[22] 19 2.8 Rietveld Method之參數設定 24 第三章 實驗方法與步驟 26 3-1 實驗藥品及設備 26 3-2 實驗方法 27 3-2-1 Pt/C觸媒的製備方法(以10 % Pt為例) 27 3-2-2 Pt-Ru/C觸媒的製作方法(以加入10% Ru為例) 28 3-2-3 DPG人工石墨粉末的製備 30 3-2-3-1 原料及設備 30 3-2-3-2 人工石墨粉末的製備流程 30 3-2-4 DPG人工石墨改質處理 32 3-3 觸媒粉末的分析 33 3-3-1 X-ray 繞射分析(XRD) 33 3-3-2 TEM微結構觀察 33 3-3-3 電化學的分析 33 3-3-3-1 工作電極的製作 33 3-3-3-2 參考電極的製作 34 3-3-3-3 循環伏安法 34 第四章 結果與討論 37 4-1 X-ray繞射分析 37 4-2 Rietveld Method 精算 39 4-3 XPS分析 49 4-4 載體BET分析 52 4-5 TEM 53 4-5-1 Pt/C 53 4-5-2 Pt-Ru/C 59 4-6 循環伏安的分析 65 4-6-1 以不同掃瞄速度進行循環伏安量測 65 4-6-2以不同濃度的硫酸進行循環伏安量測 70 4-6-3以不同濃度的Nafion調配觸媒漿液進行循環伏安量測 74 4-6-4 Pt/C 79 4-6-5 Pt-Ru/C 86 4-7 綜合討論 93 第五章 結論 97 參考文獻 99 Appendix 101 A-1 TEM photograph 101 A-1-1 Pt/C 101 A-1-2 Pt-Ru/C 1129908544 bytesapplication/pdfen-US質子交換膜燃料電池DPG人工石墨粉奈米碳管鉑觸媒proton exchange membrane fuel cellplatinum catalystCNTs(carbon nanotubes)DPG以DPG人工石墨為質子交換膜燃料電池白金觸媒載體的研究Dissolution Precipitation Graphite as carrier of platinum catalyst for PEMFCthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/55214/1/ntu-95-R93527001-1.pdf